The knockoff filter for FDR control in group-sparse and multitask regression

被引:0
|
作者
Dai, Ran [1 ]
Barber, Rina Foygel [1 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
关键词
SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose the group knockoff filter, a method for false discovery rate control in a linear regression setting where the features are grouped, and we would like to select a set of relevant groups which have a nonzero effect on the response. By considering the set of true and false discoveries at the group level, this method gains power relative to sparse regression methods. We also apply our method to the multitask regression problem where multiple response variables share similar sparsity patterns across the set of possible features. Empirically, the group knockoff filter successfully controls false discoveries at the group level in both settings, with substantially more discoveries made by leveraging the group structure.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] A prototype knockoff filter for group selection with FDR control
    Chen, Jiajie
    Hou, Anthony
    Hou, Thomas Y.
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2020, 9 (02) : 271 - 288
  • [2] Group-sparse regression using the covariance fitting criterion
    Kronvall, Ted
    Adalbjornsson, Stefan Ingi
    Nadig, Santhosh
    Jakobsson, Andreas
    SIGNAL PROCESSING, 2017, 139 : 116 - 130
  • [3] A robust knockoff filter for sparse regression analysis of microbiome compositional data
    Monti, Gianna Serafina
    Filzmoser, Peter
    COMPUTATIONAL STATISTICS, 2024, 39 (01) : 271 - 288
  • [4] Hyperparameter selection for group-sparse regression: A probabilistic approach
    Kronvall, Ted
    Jakobsson, Andreas
    SIGNAL PROCESSING, 2018, 151 : 107 - 118
  • [5] A robust knockoff filter for sparse regression analysis of microbiome compositional data
    Gianna Serafina Monti
    Peter Filzmoser
    Computational Statistics, 2024, 39 : 271 - 288
  • [6] Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort
    Wang, Hua
    Nie, Feiping
    Huang, Heng
    Kim, Sungeun
    Nho, Kwangsik
    Risacher, Shannon L.
    Saykin, Andrew J.
    Shen, Li
    BIOINFORMATICS, 2012, 28 (02) : 229 - 237
  • [7] GROUP-SPARSE MATRIX RECOVERY
    Zeng, Xiangrong
    Figueiredo, Mario A. T.
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [8] A fast algorithm for group square-root Lasso based group-sparse regression
    Zhao, Chunlei
    Mao, Xingpeng
    Chen, Minqiu
    Yu, Changjun
    SIGNAL PROCESSING, 2021, 187
  • [9] Multivariate group-sparse mode decomposition
    Mourad, Nasser
    DIGITAL SIGNAL PROCESSING, 2023, 137
  • [10] A generalized knockoff procedure for FDR control in structural change detection
    Liu, Jingyuan
    Sun, Ao
    Ke, Yuan
    JOURNAL OF ECONOMETRICS, 2024, 239 (01)