Eigenvalue paths arising from matrix paths

被引:0
|
作者
Jankowski, Eric [1 ]
Johnson, Charles R. [1 ]
机构
[1] Coll William & Mary, Dept Math, POB 8795, Williamsburg, VA 23187 USA
基金
美国国家科学基金会;
关键词
Eigenvalue paths; Eigenvalue perturbations; Matrix perturbation theory; Matrix-valued functions; Non-analytic perturbations; Operator-valued functions; ROOTS;
D O I
10.1016/j.jmaa.2021.125207
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known (see e.g. [2], [4], [5], [6]) that continuous variations in the entries of a complex square matrix induce continuous variations in its eigenvalues. If such a variation arises from one real parameter alpha is an element of [0, 1], then the eigenvalues follow continuous paths in the complex plane as alpha shifts from 0 to 1. The intent here is to study the nature of these eigenpaths, including their behavior under small perturbations of the matrix variations, as well as the resulting eigenpairings of the matrices that occur at alpha = 0 and alpha = 1. We also give analogs of our results in the setting of monic polynomials. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [2] Brauer Configuration Algebras Arising from Dyck Paths
    Moreno Canadas, Agustin
    Bravo Rios, Gabriel
    Marin Gaviria, Isaias David
    MATHEMATICS, 2022, 10 (09)
  • [3] Paths correlation matrix
    Qian, Weixian
    Zhou, Xiaojun
    Lu, Yingcheng
    Xu, Jiang
    OPTICS LETTERS, 2015, 40 (18) : 4336 - 4339
  • [4] Coxeter's Frieze Patterns Arising from Dyck Paths
    Moreno Canadas, Agustin
    Marin Gaviria, Isaias David
    Bravo Rios, Gabriel
    Fernandez Espinosa, Pedro Fernando
    RICERCHE DI MATEMATICA, 2023, 72 (02) : 867 - 889
  • [5] Coxeter’s Frieze Patterns Arising from Dyck Paths
    Agustín Moreno Cañadas
    Isaías David Marín Gaviria
    Gabriel Bravo Rios
    Pedro Fernando Fernández Espinosa
    Ricerche di Matematica, 2023, 72 : 867 - 889
  • [6] Generalized Schroder Matrices Arising from Enumeration of Lattice Paths
    Yang, Lin
    Yang, Sheng-Liang
    He, Tian-Xiao
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2020, 70 (02) : 411 - 433
  • [7] On alternating paths and the smallest positive eigenvalue of trees
    Rani, Sonu
    Barik, Sasmita
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (02) : 589 - 601
  • [8] On alternating paths and the smallest positive eigenvalue of trees
    Sonu Rani
    Sasmita Barik
    Journal of Combinatorial Optimization, 2020, 39 : 589 - 601
  • [9] Generalized Fibonacci and Lucas cubes arising from powers of paths and cycles
    Codara, P.
    D'Antona, O. M.
    DISCRETE MATHEMATICS, 2016, 339 (01) : 270 - 282
  • [10] Generalized Schröder Matrices Arising from Enumeration of Lattice Paths
    Lin Yang
    Sheng-Liang Yang
    Tian-Xiao He
    Czechoslovak Mathematical Journal, 2020, 70 : 411 - 433