Modeling Label Interactions in Multi-label Classification: A Multi-structure SVM Perspective

被引:0
|
作者
Kasinikota, Anusha [1 ]
Balamurugan, P. [2 ]
Shevade, Shirish [3 ]
机构
[1] DXC Technol, Bangalore, Karnataka, India
[2] Indian Inst Technol, Bombay, Maharashtra, India
[3] Indian Inst Sci, Bangalore, Karnataka, India
来源
ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2018, PT I | 2018年 / 10937卷
关键词
MINIMIZATION; CHAINS;
D O I
10.1007/978-3-319-93034-3_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multi-label classification has attracted much interest due to its wide applicability. Modeling label interactions and investigating their impact on classifier quality are crucial aspects of multi-label classification. In this paper, we propose a multi-structure SVM (called MSSVM) which allows the user to hypothesize multiple label interaction structures and helps to identify their importance in improving generalization performance. We design an efficient optimization algorithm to solve the proposed MSSVM. Extensive empirical evaluation provides fresh and interesting insights into the following questions: (a) How do label interactions affect multiple performance metrics typically used in multi-label classification? (b) Do higher order label interactions significantly impact a given performance metric for a particular dataset? (c) Can we make useful suggestions on the label interaction structure? and (d) Is it always beneficial to model label interactions in multi-label classification?
引用
收藏
页码:43 / 55
页数:13
相关论文
共 50 条
  • [1] Improving SVM Based Multi-label Classification by Using Label Relationship
    Fu, Di
    Zhou, Bo
    Hu, Jinglu
    2015 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2015,
  • [2] Multi-label SVM active learning for image classification
    Li, XC
    Wang, L
    Sung, E
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2207 - 2210
  • [3] Multi-label classification with label clusters
    Gatto, Elaine Cecilia
    Ferrandin, Mauri
    Cerri, Ricardo
    KNOWLEDGE AND INFORMATION SYSTEMS, 2025, 67 (02) : 1741 - 1785
  • [4] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [5] An Improved Multi-label Classification Based on Label Ranking and Delicate Boundary SVM
    Chen, Benhui
    Gu, Weifeng
    Hu, Jinglu
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [6] Combining binary-SVM and pairwise label constraints for multi-label classification
    Gu, Weifeng
    Chen, Benhui
    Hu, Jinglu
    IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2010), 2010,
  • [7] MLCE: A Multi-Label Crotch Ensemble Method for Multi-Label Classification
    Yao, Yuan
    Li, Yan
    Ye, Yunming
    Li, Xutao
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2021, 35 (04)
  • [8] Modeling label dependence for multi-label classification using the Choquistic regression
    Tehrani, Ali Fallah
    Ahrens, Diane
    PATTERN RECOGNITION LETTERS, 2017, 92 : 75 - 80
  • [9] Calibrated Multi-label Classification with Label Correlations
    Zhi-Fen He
    Ming Yang
    Hui-Dong Liu
    Lei Wang
    Neural Processing Letters, 2019, 50 : 1361 - 1380
  • [10] Robust label compression for multi-label classification
    Zhang, Ju-Jie
    Fang, Min
    Wu, Jin-Qiao
    Li, Xiao
    KNOWLEDGE-BASED SYSTEMS, 2016, 107 : 32 - 42