Approximating the product knapsack problem

被引:6
|
作者
Pferschy, Ulrich [1 ]
Schauer, Joachim [2 ]
Thielen, Clemens [3 ]
机构
[1] Karl Franzens Univ Graz, Dept Stat & Operat Res, Univ Str 15, A-8010 Graz, Austria
[2] FH JOANNEUM, Inst Internet Technol & Applicat, Werk VI Str 46, A-8605 Kapfenberg, Austria
[3] Tech Univ Munich, TUM Campus Straubing,Essigberg 3, D-94315 Straubing, Germany
关键词
Knapsack problem; Approximation scheme; Greedy procedure;
D O I
10.1007/s11590-021-01760-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the product knapsack problem, which is the variant of the classical 0-1 knapsack problem where the objective consists of maximizing the product of the profits of the selected items. These profits are allowed to be positive or negative. We present the first fully polynomial-time approximation scheme for the product knapsack problem, which is known to be weakly NP-hard. Moreover, we analyze the approximation quality achieved by a natural extension of the classical knapsack greedy procedure to the product knapsack problem.
引用
收藏
页码:2529 / 2540
页数:12
相关论文
共 50 条
  • [1] Approximating the product knapsack problem
    Ulrich Pferschy
    Joachim Schauer
    Clemens Thielen
    Optimization Letters, 2021, 15 : 2529 - 2540
  • [2] On approximating the Incremental Knapsack Problem
    Della Croce, Federico
    Pferschy, Ulrich
    Scatamacchia, Rosario
    DISCRETE APPLIED MATHEMATICS, 2019, 264 : 26 - 42
  • [3] Approximating the orthogonal knapsack problem for hypercubes
    Harren, Rolf
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 238 - 249
  • [4] On the Product Knapsack Problem
    Claudia D’Ambrosio
    Fabio Furini
    Michele Monaci
    Emiliano Traversi
    Optimization Letters, 2018, 12 : 691 - 712
  • [5] On the Product Knapsack Problem
    D'Ambrosio, Claudia
    Furini, Fabio
    Monaci, Michele
    Traversi, Emiliano
    OPTIMIZATION LETTERS, 2018, 12 (04) : 691 - 712
  • [6] Approximating the stochastic knapsack problem:: The benefit of adaptivity
    Dean, BC
    Goemans, MX
    Vondrák, J
    45TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2004, : 208 - 217
  • [7] Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity
    Dean, Brian C.
    Goemans, Michel X.
    Vondrak, Jan
    MATHEMATICS OF OPERATIONS RESEARCH, 2008, 33 (04) : 945 - 964
  • [8] Approximating the Quadratic Knapsack Problem on Special Graph Classes
    Pferschy, Ulrich
    Schauer, Joachim
    APPROXIMATION AND ONLINE ALGORITHMS, WAOA 2013, 2014, 8447 : 61 - 72
  • [9] Approximating the 3-period Incremental Knapsack Problem
    Della Croce, Federico
    Pferschy, Ulrich
    Scatamacchia, Rosario
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 52-53 : 55 - 69
  • [10] Approximating the solution of a dynamic, stochastic multiple knapsack problem
    Hartman, Joseph C.
    Perry, Thomas C.
    CONTROL AND CYBERNETICS, 2006, 35 (03): : 535 - 550