CapsGaNet: Deep Neural Network Based on Capsule and GRU for Human Activity Recognition

被引:19
|
作者
Sun, Xiaojie [1 ]
Xu, Hongji [1 ]
Dong, Zheng [1 ]
Shi, Leixin [1 ]
Liu, Qiang [1 ]
Li, Juan [1 ]
Li, Tiankuo [1 ]
Fan, Shidi [1 ]
Wang, Yuhao [1 ]
机构
[1] Shandong Univ, Sch Informat Sci & Engn, Qingdao 266237, Peoples R China
来源
IEEE SYSTEMS JOURNAL | 2022年 / 16卷 / 04期
关键词
Feature extraction; Deep learning; Convolutional neural networks; Activity recognition; Convolution; Sensors; Kernel; Aggressive activity; deep learning; human activity recognition (HAR); spatiotemporal feature; WEARABLE SENSOR;
D O I
10.1109/JSYST.2022.3153503
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The advances in deep learning with the ability to automatically extract advanced features have achieved a bright prospect for human activity recognition (HAR). However, the traditional HAR methods still have the deficiencies of incomplete feature extraction, which may lead to incorrect recognition results. To resolve the above problem, a novel framework for spatiotemporal multi-feature extraction on HAR called CapsGaNet is propounded, which is based on capsule and gated recurrent units (GRU) with attention mechanisms. The proposed framework involves a spatial feature extraction layer consisting of capsule blocks, a temporal feature extraction layer consisting of GRU with attention mechanisms, and an output layer. At the same time, considering the actual demands for recognizing aggressive activities in some specific scenarios like smart prison, we constructed a daily and aggressive activity dataset (DAAD). Moreover, based on the acceleration characteristics of aggressive activity, a threshold-based approach for aggressive activity detection is propounded to meet the needs of high real-time and low computational complexity in prison scenarios. The experiments are performed on the wireless sensor data mining (WISDM) dataset and the DAAD dataset, and the results verify that the propounded CapsGaNet could effectually improve the recognition accuracy. The proposed threshold-based approach for aggressive activity detection provides a more effective HAR way by using smart sensor devices in smart prison scenarios.
引用
收藏
页码:5845 / 5855
页数:11
相关论文
共 50 条
  • [1] WISNet: A deep neural network based human activity recognition system
    Sharen, H.
    Anbarasi, L. Jani
    Rukmani, P.
    Gandomi, Amir H.
    Neeraja, R.
    Narendra, Modigari
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [2] Human Activity Recognition Based on a Modified Capsule Network
    Zhu S.
    Chen W.
    Liu F.
    Zhang X.
    Han X.
    Mobile Information Systems, 2023, 2023
  • [3] Human Activity Recognition Method Based on Edge Computing-Assisted and GRU Deep Learning Network
    Huang, Xiaocheng
    Yuan, Youwei
    Chang, Chaoqi
    Gao, Yiming
    Zheng, Chao
    Yan, Lamei
    APPLIED SCIENCES-BASEL, 2023, 13 (16):
  • [4] Human Activity Recognition Based On Video Summarization And Deep Convolutional Neural Network
    Kushwaha, Arati
    Khare, Manish
    Bommisetty, Reddy Mounika
    Khare, Ashish
    COMPUTER JOURNAL, 2024,
  • [5] Vision based Human Activity Recognition using Deep Neural Network Framework
    Janardhanan, Jitha
    Umamaheswari, S.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (06) : 165 - 171
  • [6] A Hybrid Deep Neural Network for Human Activity Recognition based on IoT Sensors
    Benhaili, Zakaria
    Balouki, Youssef
    Moumoun, Lahcen
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2021, 12 (11) : 250 - 257
  • [7] Human Activity Recognition Based On Video Summarization And Deep Convolutional Neural Network
    Kushwaha, Arati
    Khare, Manish
    Bommisetty, Reddy Mounika
    Khare, Ashish
    Computer Journal, 1600, 67 (08): : 2601 - 2609
  • [8] Sensors-Based Human Activity Recognition Using Hybrid Features and Deep Capsule Network
    Ghafoor, Hafiz Yasir
    Jahangir, Rashid
    Jaffar, Arfan
    Alroobaea, Roobaea
    Saidani, Oumaima
    Alhayan, Fatimah
    IEEE SENSORS JOURNAL, 2024, 24 (14) : 23129 - 23139
  • [9] HActivityNet: A Deep Convolutional Neural Network for Human Activity Recognition
    Khaliluzzaman, Md
    Sayem, Md Abu Bakar Siddiq
    Misbah, Lutful Kader
    EMITTER-INTERNATIONAL JOURNAL OF ENGINEERING TECHNOLOGY, 2021, 9 (02) : 357 - 376
  • [10] InnoHAR: A Deep Neural Network for Complex Human Activity Recognition
    Xu, Cheng
    Chai, Duo
    He, Jie
    Zhang, Xiaotong
    Duan, Shihong
    IEEE ACCESS, 2019, 7 : 9893 - 9902