Thermodynamic and morphological characterization of Turing patterns in non-isothermal reaction-diffusion systems

被引:11
|
作者
Serna, Horacio [1 ]
Munuzuri, Alberto P. [2 ]
Barragan, Daniel [1 ]
机构
[1] Univ Nacl Colombia, Dept Chem, Grp Calorimetry & Irreversible Proc Thermodynam, Fac Sci, Campus El Volador,Bloque 16,Calle 59A 63-20, Medellin, Colombia
[2] Univ Santiago de Compostela, Dept Phys, Grp Nonlinear Phys, Santiago, Spain
关键词
MINKOWSKI FUNCTIONALS; ENTROPY PRODUCTION; OSCILLATIONS; TEMPERATURE;
D O I
10.1039/c7cp00543a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of temperature on the bifurcation diagram and Turing instability domain under non isothermal conditions is studied in the reversible Gray-Scott model. After adding the energy balance to the cubic autocatalytic model, the thermostat temperature and heat transfer coefficient are used as control parameters in the Turing pattern formation. The patterns obtained in the domain of the thermal parameter are characterized by quantifying the overall entropy generation rate and two topological indices; Shannon entropy and Minkowski functionals. The results show that it is possible to induce transitions between Turing patterns of different morphologies by regulating the temperature, and that these transitions take place at a lower entropy generation value compared to other parameters, such as kinetic constants and reactant fluxes. Finally, a correlation between entropy generation and topological indices shows that a difference between direct and inverse patterns is mainly morphological and not energetic.
引用
收藏
页码:14401 / 14411
页数:11
相关论文
共 50 条
  • [1] Morphological characterization of patterns in reaction-diffusion systems
    Mecke, KR
    PHYSICAL REVIEW E, 1996, 53 (05): : 4794 - 4800
  • [2] Morphological characterization of patterns in reaction-diffusion systems
    Mecke, K.R.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53 (5-A pt A):
  • [3] On the speed of propagation in Turing patterns for reaction-diffusion systems
    Klika, Vaclav
    Gaffney, Eamonn A.
    Maini, Philip K.
    PHYSICA D-NONLINEAR PHENOMENA, 2024, 467
  • [4] Non-isothermal reaction-diffusion systems with thermodynamically coupled heat and mass transfer
    Demirel, Y
    CHEMICAL ENGINEERING SCIENCE, 2006, 61 (10) : 3379 - 3385
  • [5] Turing Patterns in a Reaction-Diffusion System
    WU Yan-Ning WANG Ping-Jian HOU Chun-Ju LIU Chang-Song ZHU Zhen-Gang Key Laboratory of Material Physics
    CommunicationsinTheoreticalPhysics, 2006, 45 (04) : 761 - 764
  • [6] Turing patterns in a reaction-diffusion system
    Wu, YN
    Wang, PJ
    Hou, CJ
    Liu, CS
    Zhu, ZG
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2006, 45 (04) : 761 - 764
  • [7] Mesoscopic non-equilibrium thermodynamics of non-isothermal reaction-diffusion
    Bedeaux, D.
    Pagonabarraga, I.
    Ortiz de Zarate, J. M.
    Sengers, J. V.
    Kjelstrup, S.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (39) : 12780 - 12793
  • [8] TURING PATTERNS IN GENERAL REACTION-DIFFUSION SYSTEMS OF BRUSSELATOR TYPE
    Ghergu, Marius
    Radulescu, Vicentiu
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2010, 12 (04) : 661 - 679
  • [9] Effect of randomness and anisotropy on Turing patterns in reaction-diffusion systems
    Bose, I
    Chaudhuri, I
    PHYSICAL REVIEW E, 1997, 55 (05) : 5291 - 5296
  • [10] TURING PATTERNS AND WAVEFRONTS FOR REACTION-DIFFUSION SYSTEMS IN AN INFINITE CHANNEL
    Chen, Chao-Nien
    Ei, Shin-Ichiro
    Lin, Ya-Ping
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2010, 70 (08) : 2822 - 2843