Low Regularity Regularity Global Solutions for a generalized MHD-α system

被引:4
|
作者
Pennington, Nathan [1 ]
机构
[1] Creighton Univ, Dept Math, 319 Eppley Hall, Omaha, NE 68178 USA
关键词
MHD-alpha system; Fractional diffusion; Regularizing MHD; NAVIER-STOKES EQUATION;
D O I
10.1016/j.nonrwa.2017.04.014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Magneto-Hydrodynamic (MHD) system of equations governs the motion of viscous fluids subject to a magnetic field. Due to the difficulty of obtaining global solutions to the MHD system, it has become common to study modified versions of the system. In this paper, we prove the existence of a unique global solution to the incompressible MHD-alpha system with diffusion terms which are Fourier multipliers with symbols of the form m(xi) = vertical bar xi vertical bar(gamma)/g(vertical bar xi vertical bar)for gamma > 0 and g (essentially) a logarithm. Letting gamma(1). and gamma(2) be the regularity of the diffusion terms, we obtain global existence when gamma(1) and gamma(2) satisfy gamma(1), gamma(2) > 1, gamma(1) >= n/3, and gamma(1) + gamma(2) >= n in R-n for n >= 3. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:171 / 183
页数:13
相关论文
共 50 条
  • [1] Global regularity for the incompressible MHD-α system with fractional diffusion
    Zhao, Junning
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2014, 29 : 26 - 29
  • [2] Global regularity for the 2D incompressible MHD-α system without full dissipation and magnetic diffusions
    Ma, Caochuan
    Alsaedi, Ahmed
    Hayat, Tasawar
    Zhou, Yong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1035 - 1052
  • [3] The low regularity global solutions for the critical generalized KdV equation
    Miao, Changxing
    Shao, Shuanglin
    Wu, Yifei
    Xu, Guixiang
    DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2010, 7 (03) : 265 - 288
  • [4] Global regularity for the 3D generalized Hall-MHD system
    Pan, Nana
    Ma, Caochuan
    Zhu, Mingxuan
    APPLIED MATHEMATICS LETTERS, 2016, 61 : 62 - 66
  • [5] On the boundary regularity of weak solutions to the MHD system
    Vyalov V.
    Shilkin T.
    Journal of Mathematical Sciences, 2011, 178 (3) : 243 - 264
  • [6] On the regularity of generalized MHD equations
    Luo Yuwen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (02) : 806 - 808
  • [7] A regularity criterion for the generalized Hall-MHD system
    Weijiang Gu
    Caochuan Ma
    Jianzhu Sun
    Boundary Value Problems, 2016
  • [8] A regularity criterion for the generalized Hall-MHD system
    Gu, Weijiang
    Ma, Caochuan
    Sun, Jianzhu
    BOUNDARY VALUE PROBLEMS, 2016,
  • [9] A regularity criterion for a generalized Hall-MHD system
    Fan, Jishan
    Samet, Bessem
    Zhou, Yong
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (10) : 2438 - 2443
  • [10] Global regularity of N-dimensional generalized MHD system with anisotropic dissipation and diffusion
    Yamazaki, Kazuo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 122 : 176 - 191