Parallel Recurrent Artificial Neural Networks for Electric Vehicle Battery State of Health Estimation

被引:3
|
作者
Manoharan, Aaruththiran [1 ]
Begum, K. M. [1 ]
Aparow, Vimal Rau [1 ]
机构
[1] Univ Nottingham, Dept Elect & Elect Engn, Malaysia Campus, Semenyih, Malaysia
关键词
State of Health; Electric Vehicles; Li-ion batteries; Artificial Neural Networks; CHARGE;
D O I
10.1109/ICARCV57592.2022.10004263
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Li-ion battery State of Health (SOH) estimation is a crucial function of the Electric Vehicle (EV) Battery Management System. This is because of the unpredictable performance of Li-ion battery cells once the nominal capacity drops below 70% (due to exposure to numerous cycles). Artificial Neural Networks (ANNs) have gained popularity for SOH estimation in recent years due to their high flexibility and low complexity. The possibility of using parallel recurrent architectures in ANNs for SoH estimation is investigated in this paper. Gated Recurrent Unit (GRU-RNN) architecture was used for the parallel recurrent layers, due to its simplicity and good SoH prediction capability as seen in recent literature. The charging profile of B0005, B0006, B0007 and B0018 batteries from the NASA Ames Prognostics Center of Excellence (PCoE) dataset were used for training and testing the ANNs. The time intervals between certain points in the charging voltage profile (3.8 to 3.9V, 3.9 to 4.0V and 4.0 to 4.1V) and the time interval between 0.1 to 0.05A of the charging current profile were used as input features. The obtained results show that the proposed model has low testing dataset Mean Squared Error (MSE) (0.0299%) and good generalization when compared to the conventional GRU-RNN (0.352% MSE), parallel Bidirectional GRU-RNN (0.0360% MSE), parallel Long Short Term Memory configuration (0.0549% MSE), Bidirectional GRU-RNN (0.035% MSE) and GRU-RNN with attention (0.0448% MSE). Overall, the proposed model can accurately predict the SoH of the Li-ion batteries upon successful implementation on an EV, resulting in better consumer safety.
引用
收藏
页码:590 / 595
页数:6
相关论文
共 50 条
  • [1] Electric vehicle battery pack state of charge estimation using parallel artificial neural networks
    Manoharan, Aaruththiran
    Sooriamoorthy, Denesh
    Begam, K. M.
    Aparow, Vimal Rau
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [2] Electric Vehicle NiMH Battery State of Charge Estimation Using Artificial Neural Networks of Backpropagation and Radial Basis
    Hernandez, Jordy Alexander
    Fernandez, Efren
    Torres, Hugo
    WORLD ELECTRIC VEHICLE JOURNAL, 2023, 14 (11):
  • [3] Artificial Neural Networks, Gradient Boosting and Support Vector Machines for electric vehicle battery state estimation: A review
    Manoharan, Aaruththiran
    Begam, K. M.
    Aparow, Vimal Rau
    Sooriamoorthy, Denesh
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [4] A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks
    Bonfitto, Angelo
    ENERGIES, 2020, 13 (10)
  • [5] Estimation of state of charge of battery pack with artificial neural networks
    Chen, Y
    Zhang, JR
    Qiu, G
    ISTM/2005: 6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT, VOLS 1-9, CONFERENCE PROCEEDINGS, 2005, : 1798 - 1801
  • [6] Estimation of Electric Vehicle Battery State of Health based on Relative State of Health Evaluation
    Guo, Qi
    Qui, Wei
    Deng, Haoran
    Zhang, Xueyuan
    Li, Yi
    Wang, Xiaowei
    Yan, Xiangwu
    2017 IEEE 2ND ADVANCED INFORMATION TECHNOLOGY, ELECTRONIC AND AUTOMATION CONTROL CONFERENCE (IAEAC), 2017, : 1998 - 2002
  • [7] Virtual experiments for battery state of health estimation based on neural networks and in-vehicle data
    Heinrich, Felix
    Pruckner, Marco
    JOURNAL OF ENERGY STORAGE, 2022, 48
  • [8] Estimation and control of hybrid electric vehicle using artificial neural networks
    Wang Dazhi
    Yang Jie
    Yang Qing
    Wu Dongsheng
    Jin Hui
    ICIEA 2007: 2ND IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS, VOLS 1-4, PROCEEDINGS, 2007, : 35 - +
  • [9] A parametric battery state of health estimation method for electric vehicle applications
    Sarikurt, Turev
    Ceylan, Murat
    Balikci, Abdulkadir
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2017, 25 (04) : 2860 - 2870
  • [10] Improved Quantile Convolutional and Recurrent Neural Networks for Electric Vehicle Battery Temperature Prediction
    Billert, Andreas M.
    Yu, Runyao
    Erschen, Stefan
    Frey, Michael
    Gauterin, Frank
    BIG DATA MINING AND ANALYTICS, 2024, 7 (02): : 512 - 530