Cellulographics©: A novel smartphone user classification metrics

被引:11
|
作者
Kalia, Prateek [1 ]
Dwivedi, Yogesh K. [2 ,3 ]
Acevedo-Duque, Angel [4 ]
机构
[1] Masaryk Univ, Fac Econ & Adm, Dept Corp Econ, Lipova 507-41a, Brno 60200, Czech Republic
[2] Swansea Univ, Emerging Markets Res Ctr EMaRC, Sch Management, Room 323 Bay Campus, Swansea SA1 8EN, W Glam, Wales
[3] Pune & Symbiosis Int Deemed Univ, Symbiosis Inst Business Management, Dept Management, Pune, Maharashtra, India
[4] Univ Autonomade Chile, Publ Policy Observ, Santiago 7500912, Chile
来源
JOURNAL OF INNOVATION & KNOWLEDGE | 2022年 / 7卷 / 02期
关键词
Smartphone; Internet; Experience; Screen time; Use frequency; Location; DEVICE USE; MOBILE; USAGE; ATTITUDES; SEGMENTATION; PATTERNS; SERVICES; ADOPTION; ANXIETY; TOUCH;
D O I
10.1016/j.jik.2022.100179
中图分类号
F [经济];
学科分类号
02 ;
摘要
Despite the worldwide surge in smartphone use, there are no classification metrics based on its use. In this article, a comprehensive concept called 'Cellulographics' is introduced for characterization of smartphone users, which includes behavioral classification based on user characteristics like smartphone experience (SE), smartphone use skill (SUS), smartphone internet experience (SIE), smartphone use periods (SUP), smart-phone screen time (SST), smartphone use frequency (SUF), smartphone use activities (SUA), and smartphone use location (SUL). This concept can be applied to any field of study without limitations, where smartphone use is involved.(c) 2022 The Author(s). Published by Elsevier Espana, S.L.U. on behalf of Journal of Innovation & Knowledge. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Fusion of smartphone sensor data for classification of daily user activities
    Gökhan Şengül
    Erol Ozcelik
    Sanjay Misra
    Robertas Damaševičius
    Rytis Maskeliūnas
    Multimedia Tools and Applications, 2021, 80 : 33527 - 33546
  • [2] User context recognition using smartphone sensors and classification models
    Otebolaku, Abayomi Moradeyo
    Andrade, Maria Teresa
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2016, 66 : 33 - 51
  • [3] Fusion of smartphone sensor data for classification of daily user activities
    Sengul, Gokhan
    Ozcelik, Erol
    Misra, Sanjay
    Damasevicius, Robertas
    Maskeliunas, Rytis
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (24) : 33527 - 33546
  • [4] A SMARTPHONE AGENT FOR QOE EVALUATION AND USER CLASSIFICATION OVER MOBILE NETWORKS
    Verdolini, Alessandro
    Petrangeli, Stefano
    2013 FIFTH INTERNATIONAL WORKSHOP ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2013, : 230 - 235
  • [5] A Novel Representation for Classification of User Sentiments
    Fernandes, Steven Lawrence
    Bhushan, S. N. Bharath
    Vinod, Vinlal
    Adarsh, M. J.
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON FRONTIERS IN INTELLIGENT COMPUTING: THEORY AND APPLICATIONS, (FICTA 2016), VOL 2, 2017, 516 : 379 - 386
  • [6] Hold & Sign: A Novel Behavioral Biometrics for Smartphone User Authentication
    Buriro, Attaullah
    Crispo, Bruno
    DelFrari, Filippo
    Wrona, Konrad
    2016 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2016), 2016, : 276 - 285
  • [7] Smartphone User Interface
    Tanimura, Masashi
    Ueno, Takeshi
    FUJITSU SCIENTIFIC & TECHNICAL JOURNAL, 2013, 49 (02): : 227 - 230
  • [8] Novel algorithms for optimal compression using classification metrics
    Xie, Bei
    Bose, Tamal
    Merenyi, Erzsebet
    2008 IEEE AEROSPACE CONFERENCE, VOLS 1-9, 2008, : 1577 - +
  • [9] A Novel Feature Descriptor for Gesture Classification Using Smartphone Accelerometers
    Marasovic, Tea
    Papic, Vladan
    2013 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (ISCC), 2013,
  • [10] Delegate the smartphone user? Security awareness in smartphone platforms
    Mylonas, Alexios
    Kastania, Anastasia
    Gritzalis, Dimitris
    COMPUTERS & SECURITY, 2013, 34 : 47 - 66