Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.)

被引:29
|
作者
Pradhan, Seema [1 ]
Kant, Chandra [1 ]
Verma, Subodh [1 ]
Bhatia, Sabhyata [1 ]
机构
[1] Natl Inst Plant Genome Res, Aruna Asaf Ali Marg, New Delhi, India
来源
PLOS ONE | 2017年 / 12卷 / 07期
关键词
RNA-BINDING PROTEINS; AU-RICH ELEMENTS; MESSENGER-RNA; GENE FAMILY; ABSCISIC-ACID; ARABIDOPSIS; SEED; EVOLUTION; SEQUENCE; TRISTETRAPROLIN;
D O I
10.1371/journal.pone.0180469
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H158), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.)
    Deokar, Amit A.
    Tar'an, Bunyamin
    FRONTIERS IN PLANT SCIENCE, 2016, 7
  • [2] Genome-wide identification and analysis of SPL gene family in chickpea (Cicer arietinum L.)
    Singh, Shilpy
    Praveen, Afsana
    Bhadrecha, Pooja
    PROTOPLASMA, 2024, 261 (04) : 799 - 818
  • [3] Genome-wide Analysis of WRKY Transcription Factors Family in Chickpea (Cicer arietinum L.)
    Shende, Rajendra Tukaram
    Singh, Reeva
    Kumar, Arun
    Sengar, Rakesh Singh
    LEGUME RESEARCH, 2022, 45 (06) : 700 - 710
  • [4] Genome-wide analysis and identification of stress-responsive genes of the CCCH zinc finger family in Capsicum annuum L.
    Tang, Wenchen
    Hao, Yupeng
    Ma, Xinyu
    Shi, Yiqi
    Dang, Yongmeng
    Dong, Zeyu
    Zhao, Yongyan
    Zhao, Tianlun
    Zhu, Shuijin
    Zhang, Zhiyuan
    Gu, Fenglin
    Liu, Ziji
    Chen, Jinhong
    FRONTIERS IN PLANT SCIENCE, 2023, 14
  • [5] Genome-Wide Identification and In Silico Analysis of Annexins in Chickpea (Cicer arietinum L.)
    Swain, Bharati
    Gupta, Prateek
    Yadav, Deepanker
    BIOCHEMICAL GENETICS, 2024,
  • [6] Genome-wide analysis of Glutathione peroxidase (GPX) gene family in Chickpea (Cicer arietinum L.) under salinity stress
    Parveen, Kauser
    Saddique, Muhammad Abu Bakar
    Ali, Zulfiqar
    Rehman, Shoaib Ur
    Zaib-Un-Nisa
    Khan, Zulqurnain
    Waqas, Muhammad
    Munir, Muhammad Zeeshan
    Hussain, Niaz
    Muneer, Muhammad Atif
    GENE, 2024, 898
  • [7] Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea (Cicer arietinum L.)
    Sheel Yadav
    Yashwant K. Yadava
    Deshika Kohli
    Shashi Meena
    Vijay Paul
    P. K. Jain
    3 Biotech, 2022, 12
  • [8] Genome-wide identification and expression analysis of the GRAS gene family in response to drought stress in chickpea (Cicer arietinum L.)
    Yadav, Sheel
    Yadava, Yashwant K.
    Kohli, Deshika
    Meena, Shashi
    Paul, Vijay
    Jain, P. K.
    3 BIOTECH, 2022, 12 (03)
  • [9] Genome-wide identification of the fibrillin gene family in chickpea (Cicer arietinum L.) and its response to drought stress
    Pandey, Anuradha
    Sharma, Punam
    Mishra, Divya
    Dey, Sharmistha
    Malviya, Rinku
    Gayen, Dipak
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2023, 234
  • [10] Genome-wide analysis and stress-responsive expression of CCCH zinc finger family genes in Brassica rapa
    Boyi Pi
    Xinghui He
    Ying Ruan
    Jyan-Chyun Jang
    Yong Huang
    BMC Plant Biology, 18