New Robust Stability and Stabilization Conditions for Linear Repetitive Processes

被引:0
|
作者
Paszke, Wojciech [1 ]
Bachelier, Olivier [2 ]
机构
[1] Eindhoven Univ Technol, Control Syst Technol Grp, POB 513, NL-5600 MB Eindhoven, Netherlands
[2] Univ Poitiers, ESIP, LAII, F-86022 Poitiers, France
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper focuses on the problem of robust stabilization for differential or discrete linear repetitive processes. The provided conditions allow us to involve parameter dependent Lyapunov functions. An additional flexibility in finding a solution is obtained by introducing slack matrix variables. A simulation example is given to illustrate the theoretical developments.
引用
收藏
页码:124 / +
页数:2
相关论文
共 50 条
  • [1] New relaxed stability and stabilization conditions for differential linear repetitive processes
    Maniarski, Robert
    Paszke, Wojciech
    Rogers, Eric
    Boski, Marcin
    IFAC PAPERSONLINE, 2020, 53 (02): : 1462 - 1467
  • [2] New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes
    Boski, Marcin
    Maniarski, Robert
    Paszke, Wojciech
    Rogers, Eric
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2022, 33 (01) : 223 - 245
  • [3] New relaxed stability and stabilization conditions for both discrete and differential linear repetitive processes
    Marcin Boski
    Robert Maniarski
    Wojciech Paszke
    Eric Rogers
    Multidimensional Systems and Signal Processing, 2022, 33 : 223 - 245
  • [4] On the stability and the stabilization of linear discrete repetitive processes
    Bachelier, Olivier
    Cluzeau, Thomas
    Yeganefar, Nima
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2019, 30 (02) : 963 - 987
  • [5] On the stability and the stabilization of linear discrete repetitive processes
    Olivier Bachelier
    Thomas Cluzeau
    Nima Yeganefar
    Multidimensional Systems and Signal Processing, 2019, 30 : 963 - 987
  • [6] New results on strong practical stability and stabilization of discrete linear repetitive processes
    Paszke, Wojciech
    Dabkowski, Pawel
    Rogers, Eric
    Galkowski, Krzysztof
    SYSTEMS & CONTROL LETTERS, 2015, 77 : 22 - 29
  • [7] Robust stabilization of discrete linear repetitive processes with switched dynamics
    Bochniak, Jacek
    Galkowski, Krzysztof
    Rogers, Eric
    Kummert, Anton
    International Journal of Applied Mathematics and Computer Science, 2006, 16 (04) : 441 - 462
  • [8] Strong practical stability and stabilization of discrete linear repetitive processes
    Paweł Dąbkowski
    Krzysztof Gałkowski
    Eric Rogers
    Anton Kummert
    Multidimensional Systems and Signal Processing, 2009, 20 : 311 - 331
  • [9] Strong practical stability and stabilization of differential linear repetitive processes
    Dabkowski, Pawel
    Galkowski, Krzysztof
    Rogers, Eric
    Bachelier, Olivier
    SYSTEMS & CONTROL LETTERS, 2010, 59 (10) : 639 - 644
  • [10] Strong practical stability and stabilization of discrete linear repetitive processes
    Dabkowski, Pawel
    Galkowski, Krzysztof
    Rogers, Eric
    Kummert, Anton
    MULTIDIMENSIONAL SYSTEMS AND SIGNAL PROCESSING, 2009, 20 (04) : 311 - 331