On the Diophantine Equation ax2 + (3a+1)m = (4a+1)n

被引:0
|
作者
Yuan, Pingzhi [1 ]
Hu, Yongzhong
机构
[1] Huanan Normal Univ, Sch Math, Guangzhou 510631, Guangdong, Peoples R China
关键词
Generalized Ramanujan-Nagell equations; primitive prime factors; Lucas and Lehmer sequences; PRIMITIVE DIVISORS; LEHMER SEQUENCES; LUCAS; NUMBERS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let a be a positive integer, and let p be an odd prime such that p does not divide a(3a +1) and 4a + 1 is a power of p. In this paper, by the deep result of Bilu, Hanrot and Voutier, i.e. the existence of primitive prime factors of Lucas and Lehmer sequences, by the computation of Jacobi's symbol and by elementary arguments, we prove that: if a not equal 1, 2, then the Diophantine equation of the title has at most two positive integer solutions (x, m, n). Moreover, the diophantine equations x(2) + 4(m) = 5(n) and 2x(2) + 7(m) = 9(n) have precisely three positive integer solutions (x, m, n).
引用
收藏
页码:51 / 59
页数:9
相关论文
共 50 条
  • [1] The Diophantine equation aX4-bY2=1
    Akhtari, Shabnam
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 630 : 33 - 57
  • [2] ON THE DIOPHANTINE EQUATION (ax~m-1)/(abx-1)=by~2
    曹珍富
    Chinese Science Bulletin, 1991, (04) : 275 - 278
  • [3] 关于指数丢番图方程x+(3a+1)=(4a+1)~n(英文)
    胡永忠
    刘荣玄
    四川大学学报(自然科学版), 2006, (01) : 41 - 46
  • [4] On the number of representations of n by ax2 + by(y-1)/2, ax2 + by(3y-1)/2 and ax(x-1)/2+by(3y-1)/2
    Sun, Zhi-Hong
    ACTA ARITHMETICA, 2011, 147 (01) : 81 - 100
  • [5] UPPER BOUNDS FOR THE NUMBER OF SOLUTIONS FOR THE DIOPHANTINE EQUATION y2 = px(Ax2 - C) (C=2, ±1, ±4)
    Bencherif, Farid
    Boumahdi, Rachid
    Garici, Tarek
    Schedler, Zak
    COLLOQUIUM MATHEMATICUM, 2020, 159 (02) : 243 - 257
  • [6] ON THE SOLUTIONS OF THE EXPONENTIAL DIOPHANTINE EQUATION ax + by = (m2+1)z
    He, Bo
    Togbe, Alain
    Yang, Shichun
    QUAESTIONES MATHEMATICAE, 2013, 36 (01) : 119 - 135
  • [7] On the Diophantine Equation Ax2 - KXY plus Y2 + Lx=0
    Urrutia, J. D.
    Aranas, J. M. E.
    Lara, J. A. C. L.
    Maceda, D. L. P.
    3RD INTERNATIONAL CONFERENCE ON SCIENCE & ENGINEERING IN MATHEMATICS, CHEMISTRY AND PHYSICS 2015 (SCITECH 2015), 2015, 622
  • [8] ON DIOPHANTINE EQUATION AX4-BY2=C (C=1,4)
    LJUNGGRE.W
    MATHEMATICA SCANDINAVICA, 1967, 21 (02) : 149 - &
  • [9] DIOPHANTINE EQUATION AX2 PLUS BY2 PLUS CZ2=DXYZ
    ROSENBERGER, G
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 305 : 122 - 125
  • [10] EXPONENTIAL DIOPHANTINE EQUATION 1+A+A2+...+AX-1-PY
    EDGAR, HM
    AMERICAN MATHEMATICAL MONTHLY, 1974, 81 (07): : 758 - 759