Solvent Effects on Kinetic Mechanisms of Self-Assembly by Peptide Amphiphiles via Molecular Dynamics Simulations

被引:59
|
作者
Fu, Iris W. [1 ]
Markegard, Cade B. [1 ]
Nguyen, Hung D. [1 ]
机构
[1] Univ Calif Irvine, Dept Chem Engn & Mat Sci, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
SPONTANEOUS FIBRIL FORMATION; SECONDARY STRUCTURE; DRUG-DELIVERY; MEAN FORCE; NANOFIBERS; PROTEINS; MODEL; PH; BIOMATERIALS; TEMPERATURE;
D O I
10.1021/la503399x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Peptide amphiphiles are known to form a variety of distinctive self-assembled nanostructures (including cylindrical nanofibers in hydrogels) dependent upon the solvent conditions. Using a novel coarse-grained model, large-scale molecular dynamics simulations are performed on a system of 800 peptide amphiphiles (sequence, palmitoyl-Val(3)Ala(3)Glu(3)) to elucidate kinetic mechanisms of molecular assembly as a function of the solvent conditions. The assembly process is found to occur via a multistep process with transient intermediates that ultimately leads to the stabilized nanostructures including open networks of beta-sheets, cylindrical nanofibers, and elongated micelles. Different kinetic mechanisms are compared in terms of peptide secondary structures, solvent-accessible surface area, radius of gyration, relative shape anisotropy, intra/intermolecular interactions, and aggregate size dynamics to provide insightful information for the design of functional biomaterials.
引用
收藏
页码:315 / 324
页数:10
相关论文
共 50 条
  • [1] Role of Hydrophobicity on Self-Assembly by Peptide Amphiphiles via Molecular Dynamics Simulations
    Fu, Iris W.
    Markegard, Cade B.
    Chu, Brian K.
    Nguyen, Hung D.
    LANGMUIR, 2014, 30 (26) : 7745 - 7754
  • [2] Sequence-dependent self-assembly of peptide amphiphiles via molecular simulations
    Hung Nguyen
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [3] Self-Assembly of Stimuli-Responsive Hydrogel Nanostructures by Peptide Amphiphiles via Molecular Dynamics Simulations
    Nguyen, Hung D.
    BIOPHYSICAL JOURNAL, 2014, 106 (02) : 420A - 420A
  • [4] Molecular self-assembly and applications of designer peptide amphiphiles
    Zhao, Xiubo
    Pan, Fang
    Xu, Hai
    Yaseen, Mohammed
    Shan, Honghong
    Hauser, Charlotte A. E.
    Zhang, Shuguang
    Lu, Jian R.
    CHEMICAL SOCIETY REVIEWS, 2010, 39 (09) : 3480 - 3498
  • [5] Self-assembly of Peptide Amphiphiles and Their Applications
    Wang Jianxun
    Qin Siyong
    Cai Tengteng
    Zhang Xianzheng
    Zhuo Renxi
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (02): : 201 - 211
  • [6] Self-Assembly and Hydrogelation of Peptide Amphiphiles
    Irwansyah
    Sihombing, Riwandi
    Suwarso, Wahyudi Priyono
    MAKARA JOURNAL OF SCIENCE, 2012, 16 (01) : 51 - 57
  • [7] Molecular dynamics simulations of self-assembled peptide amphiphiles
    Tekin, Emine D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [8] Modeling the Self-Assembly of Peptide Amphiphiles into Fibers Using Coarse-Grained Molecular Dynamics
    Lee, One-Sun
    Cho, Vince
    Schatz, George C.
    NANO LETTERS, 2012, 12 (09) : 4907 - 4913
  • [9] Atomistic Molecular Dynamics Simulations of Peptide Amphiphile Self-Assembly into Cylindrical Nanofibers
    Lee, One-Sun
    Stupp, Samuel I.
    Schatz, George C.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (10) : 3677 - 3683
  • [10] Molecular dynamics simulations reveal disruptive self-assembly in dynamic peptide libraries
    Sasselli, I. R.
    Moreira, I. P.
    Ulijn, R. V.
    Tuttle, T.
    ORGANIC & BIOMOLECULAR CHEMISTRY, 2017, 15 (31) : 6541 - 6547