On Linear Operators that Preserve BJ-Orthogonality in 2-Normed Spaces

被引:0
|
作者
Iranmanesh, M. [1 ]
Sanatee, A. Ganjbakhsh [2 ]
机构
[1] Shahroud Univ Technol, Math, Dept Math, Shahrood, Iran
[2] Quchan Univ Technol, Dept Math, Math, Quchan, Iran
关键词
2-Normed space; Birkhoff-James orthogo-nality; 2-Banach space; 2-isometry;
D O I
10.30495/JME.2021.1269
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a real 2-Banach space. We follow Gunawan, Mashadi, Gemawati, Nursupiamin and Siwaningrum in saying that x is orthogonal to y if there exists a subspace V of X with codim(V) = 1 such that parallel to x +lambda y,z parallel to >= parallel to x,z parallel to for every z is an element of V and lambda is an element of R. In this paper, we prove that every linear mapping T : X -> X which preserve orthogonality is a 2-isometry multiplied by a constant.
引用
收藏
页码:29 / 40
页数:12
相关论文
共 50 条
  • [1] ON b-ORTHOGONALITY IN 2-NORMED SPACES
    Gozali, S. M.
    Gunawan, H.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2010, 16 (02) : 127 - 132
  • [2] CONTINUITY AND BOUNDEDNESS OF LINEAR OPERATORS ON NEUTROSOPHIC 2-NORMED SPACES
    Murtaza, Sajid
    Sharma, Archana
    Kumar, Vijay
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2025, 15 (01): : 137 - 153
  • [3] 2-FARTHEST ORTHOGONALITY IN GENERALIZED 2-NORMED SPACES
    Abad, S. M. Mousav Shams
    Mazaheri, H.
    Dehghan, M. A.
    JOURNAL OF THE INDONESIAN MATHEMATICAL SOCIETY, 2018, 24 (01) : 71 - 78
  • [4] On maps that preserve orthogonality in normed spaces
    Blanco, A.
    Turnsek, A.
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 709 - 716
  • [5] STRICTLY CONVEX LINEAR 2-NORMED SPACES
    HA, KS
    CHO, YJ
    KIM, SS
    KHAN, MS
    MATHEMATISCHE NACHRICHTEN, 1990, 146 : 7 - 16
  • [6] STRICTLY CONVEX LINEAR 2-NORMED SPACES
    DIMINNIE, C
    GAHLER, S
    WHITE, A
    MATHEMATISCHE NACHRICHTEN, 1974, 59 (1-6) : 319 - 324
  • [7] Compact Operators Defined on 2-Normed and 2-Probabilistic Normed Spaces
    Lael, Fatemeh
    Nourouzi, Kourosh
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2009, 2009
  • [8] Apollonious Identity in Linear 2-Normed Spaces
    Acikgoz, Mehmet
    Karakus, Yusuf
    Aslan, Nurgul
    Koskeroglu, Nurten
    Araci, Serkan
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS 1 AND 2, 2009, 1168 : 173 - +
  • [9] The Aleksandrov problem in linear 2-normed spaces
    Chu, HY
    Park, CG
    Park, WG
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 289 (02) : 666 - 672
  • [10] ORTHOGONALITY IN NORMED LINEAR SPACES
    JAMES, RC
    DUKE MATHEMATICAL JOURNAL, 1945, 12 (02) : 291 - 302