Real-Time Digital Implementation of a Principal Component Analysis Algorithm for Neurons Spike Detection

被引:0
|
作者
Vallicelli, E. A. [1 ]
Fary, F. [1 ]
Baschirotto, A. [1 ]
de Matteis, M. [1 ]
Reato, M. [3 ]
Maschietto, M. [2 ]
Rocchi, F. [2 ]
Vassanelli, S. [2 ]
Guarrera, D. [3 ]
Collazuol, G. [3 ]
Zeitler, R. [4 ]
机构
[1] Univ Milano Bicocca, Dept Phys, Milan, Italy
[2] Univ Padua, Dept Biomed Sci, Padua, Italy
[3] Univ Padua, Dept Phys, Padua, Italy
[4] Venneos GmbH, Stuttgart, Germany
关键词
Biological neural networks; Biosensors; Digital Circuits; Field programmable gate arrays; Principal component analysis; STIMULATION; ARRAY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents the result of a multidisciplinary experiment where electrical activity from a cultured rat hippocampi neuronal population is detected in real time by a FPGA implemented digital circuit. State-of-the-art EOMOSFET Multi Electrode Array (MEA) biosensors exploits a capacitive coupling between the biological environment and the sensing electronics to minimize invasiveness and cell damage, at the price of a lower SNR. For this reason, they are typically improved by noise rejection algorithms. Real time neural spikes detection opens unthinkable scenarios, allowing to stimulate single neurons in response to their behavior, possibly improving medical conditions like epilepsy. In this scenario, a spike sorting algorithm has been hardware implemented, allowing real time neural spike detection with a latency of 165ns.
引用
收藏
页码:33 / 36
页数:4
相关论文
共 50 条
  • [1] Real-time PCA(Principal component analysis) implementation on DSP
    Han, DH
    Rao, YN
    Principe, JC
    Gugel, K
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2159 - 2162
  • [2] Real-Time Principal Component Analysis
    Chowdhury, Ranak Roy
    Adnan, Muhammad Abdullah
    Gupta, Rajesh K.
    ACM/IMS Transactions on Data Science, 2020, 1 (02):
  • [3] Real-Time Implementation of the Vertex Component Analysis Algorithm on GPUs
    Barberis, A.
    Danese, G.
    Leporati, F.
    Plaza, A.
    Torti, E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2013, 10 (02) : 251 - 255
  • [4] New fast principal component analysis for real-time face detection
    El-Bakry, Hazem M.
    Machine Graphics and Vision, 2009, 18 (04): : 405 - 425
  • [5] Real-time fault detection and diagnosis using sparse principal component analysis
    Gajjar, Shriram
    Kulahci, Murat
    Palazoglu, Ahmet
    JOURNAL OF PROCESS CONTROL, 2018, 67 : 112 - 128
  • [6] Real-time Implementation of Digital Coherent Detection
    Noe, R.
    Rueckert, U.
    Hoffmann, S.
    Peveling, R.
    Pfau, T.
    El-Darawy, M.
    Al-Bermani, A.
    2009 35TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC), 2009,
  • [7] Real-Time Principal Component Pursuit
    Pope, Graeme
    Baumann, Manuel
    Studer, Christoph
    Durisi, Giuseppe
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1433 - 1437
  • [8] Real-Time Disturbance Detection and Classification using Principal Component Analysis of PMU Data
    Pourramezan, Reza
    Karimi, Houshang
    Mahseredjian, Jean
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [9] REAL-TIME R-SPIKE DETECTION IN THE CARDIAC WAVEFORM THROUGH INDEPENDENT COMPONENT ANALYSIS
    Martin, Harold
    Izquierdo, Walter
    Cabrerizo, Mercedes
    Adjouadi, Malek
    2017 IEEE SIGNAL PROCESSING IN MEDICINE AND BIOLOGY SYMPOSIUM (SPMB), 2017,
  • [10] The implementation of effective face detection algorithm using principal component analysis
    Kim, IT
    Ra, JH
    Kim, MH
    IC-AI'2001: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOLS I-III, 2001, : 1408 - 1413