Alternative visualization of large geospatial datasets

被引:15
|
作者
Koua, EL [1 ]
Kraak, MJ [1 ]
机构
[1] Int Inst Geoinformat Sci & Earth Observat, NL-7500 AA Enschede, Netherlands
来源
CARTOGRAPHIC JOURNAL | 2004年 / 41卷 / 03期
关键词
D O I
10.1179/000870404X13283
中图分类号
P9 [自然地理学]; K9 [地理];
学科分类号
0705 ; 070501 ;
摘要
Exploring large volumes of geospatial data is difficult. This paper presents an approach that combines visual and computational analysis to make this process easier. This approach is based on the effective application of computational algorithms, such as the Self- Organizing Map (SOM). These are used to uncover the structure, patterns, relationships and trends in the data, and for the creation of abstractions where conventional methods may be limited In addition, graphical representations are applied to portray extracted patterns in a visual form that allows for better understanding of the derived structures and possible geographical processes, and should f acilitate knowledge construction.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 50 条
  • [1] Physical Visualization of Geospatial Datasets
    Djavaherpour, Hessam
    Mahdavi-Amiri, Ali
    Samavati, Faramarz F.
    IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2017, 37 (03) : 61 - 69
  • [2] Interactive visual cluster detection in large geospatial datasets based on dynamic density volume visualization
    Du, Fei
    Zhu, A-Xing
    Qi, Feng
    GEOCARTO INTERNATIONAL, 2016, 31 (06) : 597 - 611
  • [3] Scientific visualization of large datasets
    Ertl, Thomas
    IT - Information Technology, 2002, 44 (06): : 303 - 307
  • [4] Visualization techniques for large datasets
    Michalos, M.
    Tselenti, P.
    Nalmpantis, S.L.
    Journal of Engineering Science and Technology Review, 2012, 5 (01) : 72 - 76
  • [5] GeoAnalytics tools applied to large geospatial datasets
    Jern, Mikael
    Astrom, Tobias
    Johansson, Sara
    PROCEEDINGS OF THE 12TH INTERNATIONAL INFORMATION VISUALISATION, 2008, : 362 - 372
  • [6] Visualization of large astrophysical simulations datasets
    Pomarède, Daniel
    Audit, Edouard
    Teyssier, Romain
    Thooris, Bruno
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 263 - 263
  • [7] The importance of locality in the visualization of large datasets
    Brooke, J. M.
    Marsh, J.
    Pettifer, S.
    Sastry, L. S.
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2007, 19 (02): : 195 - 205
  • [8] Visualization of large-scale trajectory datasets
    Zachar, Gergely
    2023 CYBER-PHYSICAL SYSTEMS AND INTERNET-OF-THINGS WEEK, CPS-IOT WEEK WORKSHOPS, 2023, : 152 - 157
  • [9] Resampling of large datasets for industrial flow visualization
    Stegmaier, S
    Schulz, M
    Ertl, T
    VISION, MODELING, AND VISUALIZATION 2003, 2003, : 375 - 382
  • [10] Interactive parallel visualization of large particle datasets
    Liang, K
    Monger, P
    Couchman, H
    PARALLEL COMPUTING, 2005, 31 (02) : 243 - 260