Anomalies and entanglement renormalization

被引:26
|
作者
Bridgeman, Jacob C. [1 ]
Williamson, Dominic J. [2 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW, Australia
[2] Univ Vienna, Vienna Ctr Quantum Technol, Boltzmanngasse 5, A-1090 Vienna, Austria
基金
澳大利亚研究理事会;
关键词
DENSITY-MATRIX RENORMALIZATION; PROTECTED TOPOLOGICAL STATES; QUANTUM PHASE-TRANSITIONS; CONFORMAL FIELD-THEORY; OPERATOR CONTENT; GROUND-STATES; PAIR STATES; SPIN CHAINS; XXZ CHAIN; ANTIFERROMAGNETS;
D O I
10.1103/PhysRevB.96.125104
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study 't Hooft anomalies of discrete groups in the framework of (1+1)-dimensional multiscale entanglement renormalization ansatz states on the lattice. Using matrix product operators, general topological restrictions on conformal data are derived. An ansatz class allowing for optimization of MERA with an anomalous symmetry is introduced. We utilize this class to numerically study a family of Hamiltonians with a symmetric critical line. Conformal data is obtained for all irreducible projective representations of each anomalous symmetry twist, corresponding to definite topological sectors. It is numerically demonstrated that this line is a protected gapless phase. Finally, we implement a duality transformation between a pair of critical lines using our subclass of MERA.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Entanglement renormalization
    Vidal, G.
    PHYSICAL REVIEW LETTERS, 2007, 99 (22)
  • [2] Entanglement renormalization and holography
    Swingle, Brian
    PHYSICAL REVIEW D, 2012, 86 (06):
  • [3] Algorithms for entanglement renormalization
    Evenbly, G.
    Vidal, G.
    PHYSICAL REVIEW B, 2009, 79 (14)
  • [4] On the renormalization of entanglement entropy
    Pang J.-Y.
    Chen J.-W.
    AAPPS Bulletin, 31 (1):
  • [5] Anyonic entanglement renormalization
    Koenig, Robert
    Bilgin, Ersen
    PHYSICAL REVIEW B, 2010, 82 (12)
  • [6] Entanglement Renormalization and Wavelets
    Evenbly, Glen
    White, Steven R.
    PHYSICAL REVIEW LETTERS, 2016, 116 (14)
  • [7] Entanglement renormalization and integral geometry
    Huang, Xing
    Lin, Feng-Li
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (12): : 1 - 35
  • [8] Entanglement renormalization and gauge symmetry
    Tagliacozzo, L.
    Vidal, G.
    PHYSICAL REVIEW B, 2011, 83 (11)
  • [9] Continuous entanglement renormalization on the circle
    Hung, Ling-Yan
    Vidal, Guifre
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [10] Entanglement renormalization and symmetry fractionalization
    Singh, Sukhbinder
    McMahon, Nathan A.
    Brennen, Gavin K.
    PHYSICAL REVIEW B, 2019, 99 (19)