The t-Improper Chromatic Number of Random Graphs

被引:16
|
作者
Kang, Ross J. [1 ]
McDiarmid, Colin [2 ]
机构
[1] McGill Univ, Sch Comp Sci, Montreal, PQ H2A 2A7, Canada
[2] Univ Oxford, Dept Stat, Oxford OX1 3TG, England
来源
COMBINATORICS PROBABILITY & COMPUTING | 2010年 / 19卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
COLORINGS;
D O I
10.1017/S0963548309990216
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the t-improper chromatic number of the Erdos-Renyi random graph G(n,p). The t-improper chromatic number chi(t)(G) is the smallest number of colours needed in a colouring of the vertices in which each colour class induces a subgraph of maximum degree at most t. If t = 0, then this is the usual notion of proper colouring. When the edge probability p is constant, we provide a detailed description of the asymptotic behaviour of chi(t)(G(n,p)) over the range of choices for the growth of t = t(n).
引用
收藏
页码:87 / 98
页数:12
相关论文
共 50 条
  • [1] The t-Tone Chromatic Number of Random Graphs
    Deepak Bal
    Patrick Bennett
    Andrzej Dudek
    Alan Frieze
    Graphs and Combinatorics, 2014, 30 : 1073 - 1086
  • [2] The t-Tone Chromatic Number of Random Graphs
    Bal, Deepak
    Bennett, Patrick
    Dudek, Andrzej
    Frieze, Alan
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1073 - 1086
  • [3] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2008, 98 (05) : 980 - 993
  • [4] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    LUCZAK, T
    COMBINATORICA, 1991, 11 (01) : 45 - 54
  • [5] THE CHROMATIC NUMBER OF RANDOM GRAPHS
    BOLLOBAS, B
    COMBINATORICA, 1988, 8 (01) : 49 - 55
  • [6] On the chromatic number of random graphs
    Coja-Oghlan, Amin
    Panagiotou, Konstantinos
    Steger, Angelika
    AUTOMATA, LANGUAGES AND PROGRAMMING, PROCEEDINGS, 2007, 4596 : 777 - +
  • [7] The chromatic number of random Cayley graphs
    Alon, Noga
    EUROPEAN JOURNAL OF COMBINATORICS, 2013, 34 (08) : 1232 - 1243
  • [8] The chromatic number of random regular graphs
    Achlioptas, D
    Moore, C
    APPROXIMATION, RANDOMIZATION, AND COMBINATORIAL OPTIMIZATION: ALGORITHMS AND TECHNIQUES, PROCEEDINGS, 2004, 3122 : 219 - 228
  • [9] The concentration of the chromatic number of random graphs
    Noga Alon
    Michael Krivelevich
    Combinatorica, 1997, 17 : 303 - 313
  • [10] THE CHROMATIC NUMBER OF RANDOM INTERSECTION GRAPHS
    Rybarczyk, Katarzyna
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (02) : 465 - 476