Investigation of ultra-thin waveguide arrays on a Bloch surface wave platform

被引:20
|
作者
Yu, Libo [1 ]
Barakat, Elsie [1 ]
Nakagawa, Wataru [2 ]
Herzig, Hans Peter [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Opt & Photon Technol Lab, CH-2000 Neuchatel, Switzerland
[2] Montana State Univ, Dept Elect & Comp Engn, Bozeman, MT 59717 USA
基金
瑞士国家科学基金会;
关键词
MAXWELLS EQUATIONS; NUMERICAL-SOLUTION; POLARIZATION; AGGREGATION; PROPAGATION; MEDIA;
D O I
10.1364/JOSAB.31.002996
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Ultra-thin polymer optical waveguide couplers for integrated optics based on Bloch surface waves (BSWs) are presented. Desirable BSW guiding properties, such as low loss and long propagation distance, are observed. The waveguide thickness is on the order of lambda/15. At 1562 nm wavelength, a coupling length of 250 mu m is found for 3 mu m wide waveguides separated by 1 mu m. The second-order mode is also investigated; we show that the fundamental mode can be excited by the second-order mode. The effect of variations in the waveguide width, gap, and refractive index are theoretically investigated by studying their impacts on the coupling length. Results are promising for mode division multiplexing, optical sensors, and optical communications. (C) 2014 Optical Society of America
引用
收藏
页码:2996 / 3000
页数:5
相关论文
共 50 条
  • [1] Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength
    Dubey, R.
    Lahijani, B. Vosoughi
    Hayrinen, M.
    Roussey, M.
    Kuittinen, M.
    Herzig, H. P.
    PHOTONICS RESEARCH, 2017, 5 (05) : 494 - 499
  • [2] Ultra-thin Bloch-surface-wave-based reflector at telecommunication wavelength
    R. DUBEY
    B. VOSOUGHI LAHIJANI
    M. H?YRINEN
    M. ROUSSEY
    M. KUITTINEN
    H. P. HERZIG
    Photonics Research, 2017, 5 (05) : 494 - 499
  • [3] Combination of an optical waveguide platform and ultra-thin spectrometer that enables increased surface plasmon resonance sensor compactness
    Xia, Guo
    Gao, Lin
    Feng, Zhi-wei
    Zhang, Long
    Shi, Wen-jie
    Li, Yan-duo
    OPTICS EXPRESS, 2022, 30 (22) : 39679 - 39690
  • [4] Surface Acoustic Wave Strain Sensor With Ultra-Thin Langasite
    Zhang, Jikai
    Jin, Hao
    Dong, Shurong
    Ding, Rui
    Chen, Jinkai
    Xuan, Weipeng
    Gao, Feng
    Luo, Jikui
    IEEE SENSORS JOURNAL, 2022, 22 (12) : 11509 - 11516
  • [5] Ultra-thin and broadband surface wave meta-absorber
    Deng, Taowu
    Liang, Jiangang
    Cai, Tong
    Wang, Canyu
    Wang, Xin
    Lou, Jing
    Du, Zhiqiang
    Wang, Dengpan
    OPTICS EXPRESS, 2021, 29 (12): : 19193 - 19201
  • [6] An ultra-thin coplanar waveguide filter based on the spoof surface plasmon polaritons
    Wang, Jun
    Zhao, Lei
    Hao, Zhang-Cheng
    Cui, Tie Jun
    APPLIED PHYSICS LETTERS, 2018, 113 (07)
  • [7] Investigation on thickness of ultra-thin carbon protective coatings on slider surface
    Harbin Institute of Technology, Harbin 150001, China
    不详
    Cailiao Gongcheng, 2006, SUPPL. (28-30):
  • [8] Surface plasmons in new waveguide structures containing ultra-thin metal and silicon layers
    Shabat, M. M.
    Ubeid, M. F.
    Abu Rahma, M. A.
    MODERN PHYSICS LETTERS B, 2018, 32 (15):
  • [9] Ultra-thin and conductive nanomembrane arrays for nanomechanical transducers
    Kang, Tae June
    Cha, Misun
    Jang, Eui Yun
    Shin, Jaeha
    Im, Hyeong Uk
    Kim, Yunho
    Lee, Junghoon
    Kim, Yong Hyup
    ADVANCED MATERIALS, 2008, 20 (16) : 3131 - 3137
  • [10] A damascene platform for controlled ultra-thin nanowire fabrication
    Guilmain, M.
    Labbaye, T.
    Dellenbach, F.
    Nauenheim, C.
    Drouin, D.
    Ecoffey, S.
    NANOTECHNOLOGY, 2013, 24 (24)