Fabrication of nanostructured NiO/WO3 with graphitic carbon nitride for visible light driven photocatalytic hydroxylation of benzene and metronidazole degradation

被引:31
|
作者
Devi, Meghaii [1 ]
Das, Bishal [1 ]
Barbhuiya, Monjur Hassan [1 ]
Bhuyan, Bishal [1 ]
Dhar, Siddhartha Sankar [1 ]
Vadivel, Sethumathavan [2 ]
机构
[1] Natl Inst Technol, Dept Chem, Cachar 788010, Assam, India
[2] PSG Coll Technol, Dept Chem, Coimbatore 641004, Tamil Nadu, India
关键词
IN-SITU SYNTHESIS; CATALYTIC HYDROXYLATION; SELECTIVE HYDROXYLATION; HYDROGEN-PEROXIDE; FACILE SYNTHESIS; H-2; GENERATION; PHENOL; OXIDATION; OXIDE; TIO2;
D O I
10.1039/c9nj02904d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In the present study, we report a novel nanocatalyst prepared by the modification of g-C3N4 nanosheets with a NiO/WO3 nanohybrid via a simple ultra-sonication method. A novel method was employed for the synthesis of the NiO/WO3 nanohybrid. The photocatalytic efficiency of the catalysts was explored in C-H activation and degradation of a product commonly found in pharmaceutical waste, namely metronidazole. The photocatalyst recorded a rapid and highly selective conversion of benzene to phenol under irradiation using a LED bulb. Degradation of metronidazole was carried out both in the presence of sunlight and LED light and monitored using UV-vis spectroscopy. It was observed that the degradation process was more efficient under solar light irradiation, where complete degradation was recorded in 90 minutes with a rate constant of 0.0165 min(-1). The modified photocatalyst showed much higher efficiency when compared to the individual components of g-C3N4 and nanostructured NiO/WO3. The structural features of the photocatalyst were thoroughly investigated using powder XRD, SEM, TEM, XPS, UV-DRS, PL and BET analysis. This enhanced efficiency is attributed to a larger surface area, lower band gap and delayed recombination of photogenerated charge carriers at the heterojunction. The critical involvement of photoactive radicals in the degradation process was thoroughly investigated by trapping experiments using photoluminescence spectroscopy.
引用
收藏
页码:14616 / 14624
页数:9
相关论文
共 50 条
  • [1] Surface hydroxylation of graphitic carbon nitride: Enhanced visible light photocatalytic activity
    Zheng, Yu
    Zhang, Zisheng
    Li, Chunhu
    Proulx, Scott
    MATERIALS RESEARCH BULLETIN, 2016, 84 : 46 - 56
  • [2] Fabrication of visible-light-driven tubular F, P-codoped graphitic carbon nitride for enhanced photocatalytic degradation of tetracycline
    Manh Dung Nguyen
    Thanh Binh Nguyen
    Thamilselvan, Annadurai
    Thuy Giang Nguyen
    Kuncoro, Eko Prasetyo
    Ruey-an Doong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (01):
  • [3] EFFECT OF PYROLYSIS CONDITIONS ON THE PHYSICOCHEMICAL PROPERTIES OF GRAPHITIC CARBON NITRIDE FOR VISIBLE-LIGHT-DRIVEN PHOTOCATALYTIC DEGRADATION
    Kim, Jeong Hyun
    Ji, Myeongjun
    Ryu, Cheol-Hui
    Lee, Young-In
    ARCHIVES OF METALLURGY AND MATERIALS, 2020, 65 (03) : 1111 - 1116
  • [4] Engineering oxygen vacancies of 2D WO3 for visible-light-driven benzene hydroxylation with dioxygen
    Chen, Tao
    Ma, Fangpei
    Chen, Zhe
    Xie, Menglin
    Li, Ting
    Zhou, Yu
    Wang, Jun
    CHEMICAL ENGINEERING JOURNAL, 2023, 468
  • [5] Enhanced visible-light-driven photocatalytic degradation of RhB by AgIO3/WO3 composites
    Cao, Qian Wen
    Zheng, Yi Fan
    Song, Xu Chun
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 70 : 359 - 365
  • [6] Barium hexaferrite nanoparticles embedded on graphitic carbon nitride for visible light photocatalytic degradation
    Dharani, Shanmugapriya
    Thanigaivel, S.
    Rajendran, Saravanan
    Arunachalam, Saravanavadivu
    Chen, Wei-Hsin
    CARBON LETTERS, 2025,
  • [7] Photocatalytic degradation of trihalomethanes and haloacetonitriles on graphitic carbon nitride under visible light irradiation
    Chang, Xueming
    Yao, Xiaolong
    Ding, Ning
    Yin, Xiufeng
    Zheng, Qinmin
    Lu, Songliu
    Shuai, Danmeng
    Sun, Yingxue
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 682 : 200 - 207
  • [8] Enhanced visible-light-driven photocatalytic performance of porous graphitic carbon nitride
    Chang, Fei
    Li, Chenlu
    Luo, Jieru
    Xie, Yunchao
    Deng, Baoqing
    Hu, Xuefeng
    APPLIED SURFACE SCIENCE, 2015, 358 : 270 - 277
  • [9] Ti(IV) doped WO3 nanocuboids: fabrication and enhanced visible-light-driven photocatalytic performance
    Feng, Chengxin
    Wang, Shaozhen
    Geng, Baoyou
    NANOSCALE, 2011, 3 (09) : 3695 - 3699
  • [10] Fabrication of wide visible-light response porous graphitic carbon nitride with excellent visible light photocatalytic performance
    Liang, Lei
    Cong, Yufeng
    Wang, Fangxiao
    Yao, Lizhu
    Shi, Lei
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)