High Capacity Electrospun MgFe2O4-C Composite Nanofibers as an Anode Material for Lithium Ion Batteries

被引:24
|
作者
Narsimulu, D. [1 ,3 ]
Rao, B. Nageswara [2 ]
Satyanarayana, N. [3 ]
Srinadhu, E. S. [4 ]
机构
[1] Indian Inst Technol Hyderabad, Dept Chem, Sangareddy 502285, TS, India
[2] Vignans Fdn Sci Technol & Res Univ, Dept Sci & Humanities, Guntur 522213, AP, India
[3] Pondicherry Univ, Dept Phys, Pondicherry 605014, India
[4] Clemson Univ, Dept Phys & Astron, Clemson, SC 29634 USA
来源
CHEMISTRYSELECT | 2018年 / 3卷 / 27期
关键词
Electrospinning; MgFe2O4-C composite nanofiber; anode material; lithium-ion battery; HYDROTHERMAL SYNTHESIS; NANORODS;
D O I
10.1002/slct.201801014
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
MgFe2O4-C composite nanofibers were prepared via electrospinning technique followed by carbonization at 600 degrees C. Thermogravimetric-differential thermal analysis (TG-DTA) results showed ignition, decomposition and carbonization temperatures of the as-grown fibers. Formation of the nanocrystalline phase of the MgFe2O4 over the amorphous phase of the carbon fibers sample was confirmed from the analysis of the measured XRD results. FE-SEM images of the as-spun and calcined fibers sample showed that the formation of one dimensional (1-D) MgFe2O4-C composite nanofibers and the formed 1-D nanofibers were well interconnected with high porous structured morphology. The electrochemical properties of the MgFe2O4-C composite nanofibers sample were tested as an anode material for lithium-ion battery. Lithium-ion battery made up of the newly developed MgFe2O4-C composite nanofibers sample, used as an anode material, showed discharge capacity of 575 mAh g(-1) at a current density of 100mA g(-1) after 20(th) cycles. Further, the discharge capacity of the lithium-ion battery also measured at a high current density of 1A g(-1) and it was found to be 433 mAh g(-1) even after 85 cycles. Also, the lithium-ion battery showed exceptional reversible capacity with the coulombic efficiency of 99.6% even after 85 cycles at a high current density of 1A g(-1). Hence the electrochemical properties suggest that the newly developed MgFe2O4-C composite nanofibers can be used as high capacity anode materials for lithium-ion batteries.
引用
收藏
页码:8010 / 8017
页数:8
相关论文
共 50 条
  • [1] High lithium electroactivity of electrospun CuFe2O4 nanofibers as anode material for lithium-ion batteries
    Luo, Lei
    Cui, Rongrong
    Qiao, Hui
    Chen, Ke
    Fei, Yaqian
    Li, Dawei
    Pang, Zengyuan
    Liu, Ke
    Wei, Qufu
    ELECTROCHIMICA ACTA, 2014, 144 : 85 - 91
  • [2] Fabrication of electrospun ZnMn2O4 nanofibers as anode material for lithium-ion batteries
    Luo, Lei
    Qiao, Hui
    Chen, Ke
    Fei, Yaqian
    Wei, Qufu
    ELECTROCHIMICA ACTA, 2015, 177 : 283 - 289
  • [3] High capacity ZnFe2O4 anode material for lithium ion batteries
    Ding, Yu
    Yang, Yifu
    Shao, Huixia
    ELECTROCHIMICA ACTA, 2011, 56 (25) : 9433 - 9438
  • [4] Hollow spheres of MgFe2O4 as anode material for lithium-ion batteries
    Yin, Yanhong
    Huo, Ningning
    Liu, Wenfeng
    Shi, Zhenpu
    Wang, Qiuxian
    Ding, Yanmin
    Zhang, Jun
    Yang, Shuting
    SCRIPTA MATERIALIA, 2016, 110 : 92 - 95
  • [5] Foldable uniform GeOx/ZnO/C composite nanofibers as a high-capacity anode material for flexible lithium ion batteries
    He, Xia
    Hu, Yi
    Chen, Renzhong
    Shen, Zhen
    Wu, Keshi
    Cheng, Zhongling
    Pan, Peng
    CHEMICAL ENGINEERING JOURNAL, 2019, 360 : 1020 - 1029
  • [6] Electrospun NiFe2O4 Nanofibers as High Capacity Anode Materials for Li-Ion Batteries
    Lee, Young-In
    Jang, Dae-Hwan
    Kim, Jee-Woung
    Kim, Woo-Byoung
    Choa, Yong-Ho
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2013, 13 (10) : 7138 - 7141
  • [7] Electrospun ZnSnO3/C Nanofibers as an Anode Material for Lithium-Ion Batteries
    Jun-Lin Wei
    Xiao-Yun Jin
    Miao-Cheng Yu
    Lei Wang
    Yu-Hang Guo
    Song-Tao Dong
    Ya-Mei Zhang
    Journal of Electronic Materials, 2021, 50 : 4945 - 4953
  • [8] Electrospun ZnSnO3/C Nanofibers as an Anode Material for Lithium-Ion Batteries
    Wei, Jun-Lin
    Jin, Xiao-Yun
    Yu, Miao-Cheng
    Wang, Lei
    Guo, Yu-Hang
    Dong, Song-Tao
    Zhang, Ya-Mei
    JOURNAL OF ELECTRONIC MATERIALS, 2021, 50 (08) : 4945 - 4953
  • [9] Electrospun CoFe2O4 Nanofibers as High Capacity Anode Materials for Li-Ion Batteries
    Hwangbo, Young
    Yoo, Jae-Hyun
    Lee, Young-In
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (10) : 7632 - 7635
  • [10] Hollow CoFe2O4 nanospheres as a high capacity anode material for lithium ion batteries
    Wang, Ying
    Su, Dawei
    Ung, Alison
    Ahn, Jung-ho
    Wang, Guoxiu
    NANOTECHNOLOGY, 2012, 23 (05)