diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data

被引:4
|
作者
Marangio, Paolo [2 ,3 ]
Law, Ka Ying Toby [1 ]
Sanguinetti, Guido [1 ,2 ,3 ]
Granneman, Sander [1 ]
机构
[1] Univ Edinburgh, Ctr Synthet & Syst Biol, Edinburgh, Midlothian, Scotland
[2] Univ Edinburgh, Sch Informat, Edinburgh, Midlothian, Scotland
[3] SISSA Data Sci Excellence Dept Initiat, Trieste, Italy
基金
英国医学研究理事会;
关键词
Hidden Markov model; High-throughput RNA structure probing; RNA structural changes; PROTEIN INTERACTIONS; SECONDARY STRUCTURE; SHAPE;
D O I
10.1186/s13059-021-02379-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Advancing RNA structural probing techniques with next-generation sequencing has generated demands for complementary computational tools to robustly extract RNA structural information amidst sampling noise and variability. We present diffBUM-HMM, a noise-aware model that enables accurate detection of RNA flexibility and conformational changes from high-throughput RNA structure-probing data. diffBUM-HMM is widely compatible, accounting for sampling variation and sequence coverage biases, and displays higher sensitivity than existing methods while robust against false positives. Our analyses of datasets generated with a variety of RNA probing chemistries demonstrate the value of diffBUM-HMM for quantitatively detecting RNA structural changes and RNA-binding protein binding sites.
引用
收藏
页数:21
相关论文
共 41 条
  • [1] diffBUM-HMM: a robust statistical modeling approach for detecting RNA flexibility changes in high-throughput structure probing data
    Paolo Marangio
    Ka Ying Toby Law
    Guido Sanguinetti
    Sander Granneman
    Genome Biology, 22
  • [2] Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments
    Selega A.
    Sirocchi C.
    Iosub I.
    Granneman S.
    Sanguinetti G.
    Nature Methods, 2017, 14 (1) : 83 - 89
  • [3] Robust statistical modeling improves sensitivity of high-throughput RNA structure probing experiments
    Selega, Alina
    Sirocchi, Christel
    Iosub, Ira
    Granneman, Sander
    Sanguinetti, Guido
    NATURE METHODS, 2017, 14 (01) : 83 - 89
  • [4] A high-throughput approach to profile RNA structure
    Delli Ponti, Riccardo
    Marti, Stefanie
    Armaos, Alexandros
    Gaetano Tartaglia, Gian
    NUCLEIC ACIDS RESEARCH, 2017, 45 (05)
  • [5] RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data
    Wu, Yang
    Qu, Rihao
    Huang, Yiming
    Shi, Binbin
    Liu, Mengrong
    Li, Yang
    Lu, Zhi John
    NUCLEIC ACIDS RESEARCH, 2016, 44 (W1) : W294 - W301
  • [6] A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer)
    Berkowitz, Nathan D.
    Silverman, Ian M.
    Childress, Daniel M.
    Kazan, Hilal
    Wang, Li-San
    Gregory, Brian D.
    BMC BIOINFORMATICS, 2016, 17
  • [7] A comprehensive database of high-throughput sequencing-based RNA secondary structure probing data (Structure Surfer)
    Nathan D. Berkowitz
    Ian M. Silverman
    Daniel M. Childress
    Hilal Kazan
    Li-San Wang
    Brian D. Gregory
    BMC Bioinformatics, 17
  • [8] reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction
    Risa Kawaguchi
    Hisanori Kiryu
    Junichi Iwakiri
    Jun Sese
    BMC Bioinformatics, 20
  • [9] reactIDR: evaluation of the statistical reproducibility of high-throughput structural analyses towards a robust RNA structure prediction
    Kawaguchi, Risa
    Kiryu, Hisanori
    Iwakiri, Junichi
    Sese, Jun
    BMC BIOINFORMATICS, 2019, 20 (Suppl 3)
  • [10] Mod-seq: A High-Throughput Method for Probing RNA Secondary Structure
    Lin, Yizhu
    May, Gemma E.
    McManus, C. Joel
    STRUCTURES OF LARGE RNA MOLECULES AND THEIR COMPLEXES, 2015, 558 : 125 - 152