Dynamic Changes in Soil Microbial Communities with Glucose Enrichment in Sediment Microbial Fuel Cells

被引:14
|
作者
Kuo, Jimmy [1 ,2 ]
Liu, Daniel [3 ]
Wang, Shuai-Hao [3 ]
Lin, Chorng-Horng [3 ]
机构
[1] Natl Museum Marine Biol & Aquarium, Dept Planning & Res, Pingtung 94450, Taiwan
[2] Natl Dong Hwa Univ, Grad Inst Marine Biol, Pingtung 94450, Taiwan
[3] Da Yeh Univ, Dept Bioresources, 168 Univ Rd, Changhua 51591, Taiwan
关键词
Sediment microbial fuel cell; Glucose; 16S rDNA; Microbial community dynamics; EXOELECTROGENIC BACTERIA; MICROORGANISMS; PERFORMANCE; GENERATION; DIVERSITY; SURFACE; ENERGY;
D O I
10.1007/s12088-021-00959-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
To investigate soil microbial community dynamics in sediment microbial fuel cells (MFCs), this study applied nonhydric (D) and hydric (S) soils to single-chamber and mediator-free MFCs. Glucose was also used to enrich microorganisms in the soils. The voltage outputs of both the D and S sediment MFCs increased over time but differed from each other. The initial open circuit potentials were 345 and 264 mV for the D and S MFCs. The voltage output reached a maximum of 503 and 604 mV for D and S on days 125 and 131, respectively. The maximum power densities of the D and S MFCs were 2.74 and 2.12 mW m(-2), analyzed on day 50. Clustering results revealed that the two groups did not cluster after glucose supplementation and 126 days of MFC function. The change in Geobacter abundance was consistent with the voltage output, indicating that these bacteria may act as the main exoelectrogens on the anode. Spearman correlation analysis demonstrated that, in the D soils, Geobacter was positively correlated with Dialister and negatively correlated with Bradyrhizobium, Kaistobacter, Pedomicrobium, and Phascolarctobacterium; in the S soils, Geobacter was positively correlated with Shewanella and negatively correlated with Blautia. The results suggested that different soil sources in the MFCs and the addition of glucose as a nutrient produced diverse microbial communities with varying voltage output efficiencies.
引用
收藏
页码:497 / 505
页数:9
相关论文
共 50 条
  • [1] Dynamic Changes in Soil Microbial Communities with Glucose Enrichment in Sediment Microbial Fuel Cells
    Jimmy Kuo
    Daniel Liu
    Shuai-Hao Wang
    Chorng-Horng Lin
    Indian Journal of Microbiology, 2021, 61 : 497 - 505
  • [2] Functional Prediction of Microbial Communities in Sediment Microbial Fuel Cells
    Kuo, Jimmy
    Liu, Daniel
    Lin, Chorng-Horng
    BIOENGINEERING-BASEL, 2023, 10 (02):
  • [3] Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose
    Nelli J. Beecroft
    Feng Zhao
    John R. Varcoe
    Robert C. T. Slade
    Alfred E. Thumser
    Claudio Avignone-Rossa
    Applied Microbiology and Biotechnology, 2012, 93 : 423 - 437
  • [4] Dynamic changes in the microbial community composition in microbial fuel cells fed with sucrose
    Beecroft, Nelli J.
    Zhao, Feng
    Varcoe, John R.
    Slade, Robert C. T.
    Thumser, Alfred E.
    Avignone-Rossa, Claudio
    APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2012, 93 (01) : 423 - 437
  • [5] Performance of soil microbial fuel cells under different conditions and analysis on associated microbial communities
    Wang H.
    Li L.
    Cao X.
    Fang Z.
    Li X.
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2017, 47 (06): : 1141 - 1147
  • [6] Microbial electron transfer processes in sediment microbial fuel cells
    Zhang H.
    Xu M.
    Luo J.
    Zhu C.
    Yang Y.
    Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2019, 49 (12): : 1461 - 1472
  • [7] Response of sediment microbial communities to crude oil contamination in marine sediment microbial fuel cells under ferric iron stimulation
    Hamdan, Hamdan Z.
    Salam, Darine A.
    ENVIRONMENTAL POLLUTION, 2020, 263
  • [8] Enrichment of Microbial Electrolysis Cell Biocathodes from Sediment Microbial Fuel Cell Bioanodes
    Pisciotta, John M.
    Zaybak, Zehra
    Call, Douglas F.
    Nam, Joo-Youn
    Logan, Bruce E.
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2012, 78 (15) : 5212 - 5219
  • [9] Bioremediation analysis of sediment-microbial fuel cells for energy recovery from microbial activity in soil
    Bose, Debajyoti
    Santra, Mahula
    Sanka, Rama Venkata Siva Prasanna
    Krishnakumar, Balaji
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (04) : 6436 - 6445
  • [10] Change in microbial communities in acetate- and glucose-fed microbial fuel cells in the presence of light
    Xing, Defeng
    Cheng, Shaoan
    Regan, John M.
    Logan, Bruce E.
    BIOSENSORS & BIOELECTRONICS, 2009, 25 (01): : 105 - 111