Multivariate quasi-interpolation schemes for dimension-splitting multiquadric

被引:16
|
作者
Ling, L [1 ]
机构
[1] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
关键词
multidimensional; multivariate; multilevel; quasi-interpolation; radial basis function (RBF); dimension-splitting; multiquadric (MQ);
D O I
10.1016/j.amc.2003.12.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the multilevel univariate quasi-interpolation formula proposed in [A univariate quasi-multiquadric interpolation with better smoothness, Comput. Math. Appl., in press] to multidimensions using the dimension-splitting multiquadric (DSMQ) basis function approach. Our multivariate scheme is readily preformed on parallel computers. We show that the cost of finding the coefficient of the quasi-interpolant is 3dN on R-d, and the work of direct evaluation of the quasi-interpolant can be reduced from 11N(2) in 2D and 16N(2) in 3D to approximate to 2N. A boundary padding technique can be employed to improve accuracy. Numerical results in 2D and 3D are both given. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:195 / 209
页数:15
相关论文
共 50 条
  • [1] Generator,multiquadric generator,quasi-interpolation and multiquadric quasi-interpolation
    WU Zong-min MA Li-min Shanghai Key Laboratory for Contemporary Applied Mathematics.School of Mathematical Sciences
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 390 - 400
  • [2] Generator, multiquadric generator, quasi-interpolation and multiquadric quasi-interpolation
    Wu Zong-min
    Ma Li-min
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2011, 26 (04) : 390 - 400
  • [3] Generator,multiquadric generator,quasi-interpolation and multiquadric quasi-interpolation
    WU Zongmin MA Limin Shanghai Key Laboratory for Contemporary Applied MathematicsSchool of Mathematical SciencesFudan UniversityShanghai China
    Applied Mathematics:A Journal of Chinese Universities(Series B), 2011, 26 (04) : 390 - 400
  • [4] Generator, multiquadric generator, quasi-interpolation and multiquadric quasi-interpolation
    Zong-min Wu
    Li-min Ma
    Applied Mathematics-A Journal of Chinese Universities, 2011, 26 : 390 - 400
  • [5] A MULTIVARIATE MULTIQUADRIC QUASI-INTERPOLATION WITH QUADRIC REPRODUCTION
    Feng, Renzhong
    Zhou, Xun
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (03) : 311 - 323
  • [6] High accuracy multiquadric quasi-interpolation
    Jiang, Zi-Wu
    Wang, Ren-Hong
    Zhu, Chun-Gang
    Xu, Min
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (05) : 2185 - 2195
  • [7] A new multiquadric quasi-interpolation operator with interpolation property
    Wu, Jinming
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2014, 37 (11) : 1593 - 1601
  • [8] Shape preserving fractal multiquadric quasi-interpolation
    Kumar, D.
    Chand, A. K. B.
    Massopust, P. R.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (05):
  • [9] A family of multivariate multiquadric quasi-interpolation operators with higher degree polynomial reproduction
    Wu, Ruifeng
    Wu, Tieru
    Li, Huilai
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 274 : 88 - 108
  • [10] Applying multiquadric quasi-interpolation for boundary detection
    Gao, Qinjiao
    Wu, Zongmin
    Zhang, Shenggang
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (12) : 4356 - 4361