Almost everywhere convergence of Bochner-Riesz means with critical index for Dunkl transforms

被引:5
|
作者
Dai, Feng [1 ]
Ye, Wenrui [1 ]
机构
[1] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Dunkl transforms; Bochner-Riesz means; Almost everywhere convergence; CESARO MEANS;
D O I
10.1016/j.jat.2015.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B-R(delta)(h(K)(2); f), (R > 0) denote the Bochner Riesz means of order delta > -1 for the Dunkl transform of f is an element of L-1 (R-d; h(k)(2)dx) associated with the weight function h(k)(2)(x) := Pi(d)(j=1) vertical bar x(j)vertical bar(2kj) on R-d, where K := (K-1, ... , K-d) is an element of [0, infinity)(d). This paper shows that if K not equal 0, then the Bochner Riesz mean B-R(delta) (h(K)(2); f) (x) of each function f is an element of L-1(R-d; h(k)(2)dx) converges almost everywhere to f (x) on R-d at the critical index delta = lambda(K) :=d-1/2 + Sigma(d)(j=1) K-j as R -> infinity. As is well-known in classical analysis, this result is no longer true in the unweighted case where K = 0, h(K) (x) = 1, and B-R(delta) (h(K)2: f) is the Bochner Riesz mean of the Fourier transform. 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:43 / 59
页数:17
相关论文
共 50 条