Analytical solution to axisymmetric consolidation in unsaturated soils with linearly depth-dependent initial conditions

被引:62
|
作者
Ho, Liem [1 ]
Fatahi, Behzad [1 ]
Khabbaz, Hadi [1 ]
机构
[1] Univ Technol Sydney, Sch Civil & Environm Engn, Sydney, NSW 2007, Australia
关键词
Axisymmetric consolidation; Unsaturated soils; Analytical solution; Vertical drain wells; Excess pore pressures; Degree of consolidation; ONE-DIMENSIONAL CONSOLIDATION; VERTICAL DRAIN CONSOLIDATION; RADIAL CONSOLIDATION; SEMIANALYTICAL SOLUTION; STRAIN CONSOLIDATION;
D O I
10.1016/j.compgeo.2015.12.019
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper introduces an analytical solution for the axisymmetric consolidation of unsaturated soils subjected to constant external loading. The analytical procedure employs variables separation and Laplace transformation techniques while capturing the uniform and linear initial excess pore pressure distributions with depth. Excess pore-air and pore-water pressures as functions of time, radial and vertical flows are determined using Laplace transforms, Fourier Bessel and sine series, respectively. In this study, the consolidation behavior, in terms of changes in excess pore-air and pore-water pressures and the average degree of consolidation, are investigated against the air to water permeability ratio. The effects of radial distance from the drain well on the dissipation rate are likewise highlighted in worked examples. Excess pore pressure isochrones and the matric suction varying with time are also presented. Crown Copyright (C) 2016 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:102 / 121
页数:20
相关论文
共 50 条
  • [1] Analytical solution for the consolidation of unsaturated vertical drain foundation under depth-dependent initial conditions
    Zhou, Tong
    Li, Tianyi
    Wang, Lei
    Wen, Minjie
    Chen, Yang
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2022, 46 (14) : 2754 - 2769
  • [2] Analytical solution for consolidation of unsaturated composite foundation improved by permeable and impermeable columns considering depth-dependent initial stress
    Qin, Aifang
    Peng, Yuxiang
    Gong, Jiaming
    Jiang, Lianghua
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2024, 48 (07) : 1864 - 1878
  • [3] Two-dimensional plane strain consolidation of unsaturated soils considering the depth-dependent stress
    Wang, Lei
    Shen, Sidong
    Li, Tianyi
    Wen, Minjie
    Zhou, Annan
    JOURNAL OF ROCK MECHANICS AND GEOTECHNICAL ENGINEERING, 2023, 15 (06) : 1603 - 1614
  • [4] One-Dimensional Consolidation for Unsaturated Soils under Depth-Dependent Stress Induced by Multistage Load
    Shen, Sidong
    Wang, Lei
    Zhou, Annan
    Xu, Yongfu
    Xia, Xiaohe
    INTERNATIONAL JOURNAL OF GEOMECHANICS, 2022, 22 (09)
  • [5] Analytical solution to one-dimensional consolidation in unsaturated soils
    Ai-fang Qin
    Guang-jing Chen
    Yong-wei Tan
    De-an Sun
    Applied Mathematics and Mechanics, 2008, 29 : 1329 - 1340
  • [6] Analytical solution to one-dimensional consolidation in unsaturated soils
    秦爱芳
    陈光敬
    谈永卫
    孙德安
    Applied Mathematics and Mechanics(English Edition), 2008, (10) : 1329 - 1340
  • [7] Analytical solution to one-dimensional consolidation in unsaturated soils
    Qin Ai-fang
    Chen Guang-jing
    Tan Yong-wei
    Sun De-an
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2008, 29 (10) : 1329 - 1340
  • [8] Analytical layer-element solution to axisymmetric consolidation of multilayered soils
    Ai, Zhi Yong
    Cheng, Yi Chong
    Zeng, Wen Ze
    COMPUTERS AND GEOTECHNICS, 2011, 38 (02) : 227 - 232
  • [9] A General Analytical Solution for Axisymmetric Consolidation of Unsaturated Soil with Impeded Drainage Boundaries
    Huang, Ming-hua
    Lv, Chang
    Zhou, Zheng-lin
    GEOFLUIDS, 2021, 2021
  • [10] A simple analytical solution to one-dimensional consolidation for unsaturated soils
    Zhou, Wan-Huan
    Zhao, Lin-Shuang
    Li, Xi-Bin
    INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, 2014, 38 (08) : 794 - 810