Effect of construction angles on microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting

被引:87
|
作者
Li, Xiaofeng [1 ,2 ]
Yi, Denghao [1 ,3 ]
Wu, Xiaoyu [1 ]
Zhang, Jinfang [1 ,2 ]
Yang, Xiaohui [4 ]
Zhao, Zixuan [2 ]
Feng, Yinghao [1 ,5 ]
Wang, Jianhong [1 ]
Bai, Peikang [1 ]
Liu, Bin [2 ]
Liu, Yong [2 ]
机构
[1] North Univ China, Sch Mat Sci & Engn, Taiyuan 030051, Peoples R China
[2] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[3] Beijing Univ Technol, Fac Mat & Mfg, Inst Laser Engn, Beijing 100124, Peoples R China
[4] Taiyuan Univ Sci & Technol, Instrumental Anal Ctr, Taiyuan 030024, Peoples R China
[5] Univ Sci & Technol Beijing, Sch Mech Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Selective laser melting; AlSi10Mg alloy; Construction angles; Anisotropy; CRYSTALLOGRAPHIC TEXTURE; TENSILE PROPERTIES; PROCESS PARAMETERS; ORIENTATION; PARTS; DEPENDENCY; STRENGTH; POROSITY; DEFECTS; FATIGUE;
D O I
10.1016/j.jallcom.2021.160459
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this study, seven AlSi10Mg bulks with different construction angles (0 degrees, 15 degrees, 30 degrees, 45 degrees, 60 degrees, 75 degrees, and 90 degrees) were fabricated by selective laser melting (SLM). The effects of different construction angles on the microstructure and mechanical properties of AlSi10Mg alloys were investigated. Increasing the construction angle changed the laser track segments from an ellipse to a semi-ellipse and then to fish-scale, specifically again from a semi-ellipse to an ellipse, due to the decrease of the laser radiation area. Meanwhile, the grains in the vertical planes changed from columnar grains to irregularly arranged grains, and then to equiaxed grains. The 45 degrees sample exhibited the highest hardness of 154.44 HV0.1. The 60 degrees sample had a good combination of strength and plasticity with a tensile strength of 463.54 MPa, yield strength of 283.37 MPa, and elongation of 9.25%. The observed mechanical property anisotropy of the current AlSi10Mg alloy was a result of the pores, equiaxed grain structure, ultra-fine equiaxed sub-grains, and working hardening. In addition, the difference in the sample microstructures was attributed to the construction angles and deposited layer area. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting (SLM)
    Bai, P. K.
    Zhao, Z. Y.
    Li, J.
    Wu, L. Y.
    Liang, M. J.
    Tan, L.
    Liao, H. H.
    LASERS IN ENGINEERING, 2019, 44 (1-3) : 157 - 167
  • [2] Research on Microstructure and Properties of AlSi10Mg Fabricated by Selective Laser Melting
    Pan, Wei
    Ye, Zhanggen
    Zhang, Yongzhong
    Liu, Yantao
    Liang, Bo
    Zhai, Ziyu
    MATERIALS, 2022, 15 (07)
  • [3] Effect of Annealing Temperature on Microstructure and Tensile Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting
    Yan T.
    Tang P.
    Chen B.
    Chu R.
    Guo S.
    Xiong H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (08): : 37 - 45
  • [4] Effect of direct aging and annealing on the microstructure and mechanical properties of AlSi10Mg fabricated by selective laser melting
    Xiao, Haifeng
    Zhang, Changchun
    Zhu, Haihong
    RAPID PROTOTYPING JOURNAL, 2023, 29 (01) : 118 - 127
  • [5] Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting
    Takata, Naoki
    Kodaira, Hirohisa
    Suzuki, Asuka
    Kobashi, Makoto
    MATERIALS CHARACTERIZATION, 2018, 143 : 18 - 26
  • [6] On the Selective Laser Melting (SLM) of the AlSi10Mg Alloy: Process, Microstructure, and Mechanical Properties
    Trevisan, Francesco
    Calignano, Flaviana
    Lorusso, Massimo
    Pakkanen, Jukka
    Aversa, Alberta
    Ambrosio, Elisa Paola
    Lombardi, Mariangela
    Fino, Paolo
    Manfredi, Diego
    MATERIALS, 2017, 10 (01):
  • [7] Effects of remelting on the surface morphology, microstructure and mechanical properties of AlSi10Mg alloy fabricated by selective laser melting
    Kuai, Zezhou
    Li, Zhonghua
    Liu, Bin
    Liu, Wenpeng
    Yang, Shuai
    MATERIALS CHEMISTRY AND PHYSICS, 2022, 285
  • [8] Effect of Energy Density on Defects and Mechanical Properties of AlSi10Mg Alloy Fabricated by Selective Laser Melting
    Yan T.
    Tang P.
    Chen B.
    Gao X.
    Chu R.
    Xiong H.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2020, 56 (24): : 96 - 105
  • [9] Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism
    Li, Wei
    Li, Shuai
    Liu, Jie
    Zhang, Ang
    Zhou, Yan
    Wei, Qingsong
    Yan, Chunze
    Shi, Yusheng
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2016, 663 : 116 - 125
  • [10] Effect of Heat Treatment on Microstructure and Properties of Selective Laser Melting AlSi10Mg Alloy
    Jian, Haigen
    Yang, Man
    Fang, Wu
    Pai, Junjun
    Yang, Xiaomei
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2024, : 3267 - 3280