Computerized comprehensive data analysis of Lung Imaging Database Consortium (LIDC)

被引:11
|
作者
Tan, Jun [1 ]
Pu, Jiantao [1 ]
Zheng, Bin [1 ]
Wang, Xingwei [1 ]
Leader, Joseph K. [1 ]
机构
[1] Univ Pittsburgh, Dept Radiol, Imaging Res Div, Pittsburgh, PA 15213 USA
基金
美国国家卫生研究院;
关键词
LIDC; lung nodule/cancer; CT; computer-aided detection and diagnosis; PULMONARY NODULES; CT; CLASSIFICATION; DIAGNOSIS;
D O I
10.1118/1.3455701
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Lung Image Database Consortium (LIDC) is the largest public CT image database of lung nodules. In this study, the authors present a comprehensive and the most updated analysis of this dynamically growing database under the help of a computerized tool, aiming to assist researchers to optimally use this database for lung cancer related investigations. Methods: The authors developed a computer scheme to automatically match the nodule outlines marked manually by radiologists on CT images. A large variety of characteristics regarding the annotated nodules in the database including volume, spiculation level, elongation, interobserver variability, as well as the intersection of delineated nodule voxels and overlapping ratio between the same nodules marked by different radiologists are automatically calculated and summarized. The scheme was applied to analyze all 157 examinations with complete annotation data currently available in LIDC dataset. Results: The scheme summarizes the statistical distributions of the abovementioned geometric and diagnosis features. Among the 391 nodules, (1) 365 (93.35%) have principal axis length <= 20 mm; (2) 120, 75, 76, and 120 were marked by one, two, three, and four radiologists, respectively; and (3) 122 (32.48%) have the maximum volume overlapping ratios >= 80% for the delineations of two radiologists, while 198 (50.64%) have the maximum volume overlapping ratios <60%. The results also showed that 72.89% of the nodules were assessed with malignancy score between 2 and 4, and only 7.93% of these nodules were considered as severely malignant (malignancy >= 4). Conclusions: This study demonstrates that LIDC contains examinations covering a diverse distribution of nodule characteristics and it can be a useful resource to assess the performance of the nodule detection and/or segmentation schemes. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3455701]
引用
收藏
页码:3802 / 3808
页数:7
相关论文
共 50 条
  • [1] An analysis of early studies released by the lung imaging database consortium (LIDC)
    Turner, Wesley D.
    Kelliher, Timothy P.
    Ross, James C.
    Miller, James V.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2006, PT 2, 2006, 4191 : 487 - 494
  • [2] An analysis of early studies released by the Lung Imaging Database Consortium (LIDC)
    Ross, James C.
    Miller, James V.
    Turner, Wesley D.
    Kelliher, Timothy P.
    ACADEMIC RADIOLOGY, 2007, 14 (11) : 1382 - 1388
  • [3] The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
    McNitt-Gray, Michael F.
    Armato, Samuel G., III
    Meyer, Charles R.
    Reeves, Anthony P.
    McLennan, Geoffrey
    Pais, Richie C.
    Freymann, John
    Brown, Matthew S.
    Engelmann, Roger M.
    Bland, Peyton H.
    Laderach, Gary E.
    Piker, Chris
    Guo, Junfeng
    Towfic, Zaid
    Qing, David P. -Y.
    Yankelevitz, David F.
    Aberle, Denise R.
    van Beek, Edwin J. R.
    MacMahon, Heber
    Kazerooni, Ella A.
    Croft, Barbara Y.
    Clarke, Laurence P.
    ACADEMIC RADIOLOGY, 2007, 14 (12) : 1464 - 1474
  • [4] The Lung Image Database Consortium (LIDC) data collection process for nodule detection and annotation
    McNitt-Gray, M. F.
    Armato, S. G.
    Meyer, C. R.
    Reeves, A. P.
    McLennan, G.
    Pais, R.
    Freymann, J.
    Brown, M. S.
    Engelmann, R. M.
    Bland, P. H.
    Laderach, G. E.
    Piker, C.
    Gu, J.
    Qing, D. P.
    Yankelevitz, D. F.
    Aberlel, D. R.
    van Beek, E. J. R.
    MacMahon, H.
    Kazerooni, E. A.
    Croft, B. Y.
    Clarke, L.
    MEDICAL IMAGING 2007: COMPUTER-AIDED DIAGNOSIS, PTS 1 AND 2, 2007, 6514
  • [5] DICOM re-encoding of volumetrically annotated Lung Imaging Database Consortium (LIDC) nodules
    Fedorov, Andrey
    Hancock, Matthew
    Clunie, David
    Brochhausen, Mathias
    Bona, Jonathan
    Kirby, Justin
    Freymann, John
    Pieper, Steve
    J. W. L. Aerts, Hugo
    Kikinis, Ron
    Prior, Fred
    MEDICAL PHYSICS, 2020, 47 (11) : 5953 - 5965
  • [6] Data Analysis of the Lung Imaging Database Consortium and Image Database Resource Initiative
    Wang, Weisheng
    Luo, Jiawei
    Yang, Xuedong
    Lin, Hongli
    ACADEMIC RADIOLOGY, 2015, 22 (04) : 488 - 495
  • [7] A Pulmonary Nodule View System for the Lung Image Database Consortium (LIDC)
    Lin, Hongli
    Chen, Zhencheng
    Wang, Weisheng
    ACADEMIC RADIOLOGY, 2011, 18 (09) : 1181 - 1185
  • [8] The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): A Completed Public Database of CT Scans for Lung Nodule Analysis
    Armato, S.
    McLennan, G.
    McNitt-Gray, M.
    Meyer, C.
    Reeves, A.
    Bidaut, L.
    Zhao, B.
    Croft, B.
    Clarke, L.
    MEDICAL PHYSICS, 2010, 37 (06) : 3416 - 3417
  • [9] The lung image database consortium (LIDC): Ensuring the integrity of expert-defined "truth"
    Armato, Samuel G., III
    Roberts, Rachael Y.
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    McLennan, Geoffrey
    Engelmann, Roger M.
    Bland, Peyton H.
    Aberle, Denise R.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Croft, Barbara Y.
    Clarke, Laurence P.
    ACADEMIC RADIOLOGY, 2007, 14 (12) : 1455 - 1463
  • [10] The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans
    Armato, Samuel G., III
    McLennan, Geoffrey
    Bidaut, Luc
    McNitt-Gray, Michael F.
    Meyer, Charles R.
    Reeves, Anthony P.
    Zhao, Binsheng
    Aberle, Denise R.
    Henschke, Claudia I.
    Hoffman, Eric A.
    Kazerooni, Ella A.
    MacMahon, Heber
    van Beek, Edwin J. R.
    Yankelevitz, David
    Biancardi, Alberto M.
    Bland, Peyton H.
    Brown, Matthew S.
    Engelmann, Roger M.
    Laderach, Gary E.
    Max, Daniel
    Pais, Richard C.
    Qing, David P-Y
    Roberts, Rachael Y.
    Smith, Amanda R.
    Starkey, Adam
    Batra, Poonam
    Caligiuri, Philip
    Farooqi, Ali
    Gladish, Gregory W.
    Jude, C. Matilda
    Munden, Reginald F.
    Petkovska, Iva
    Quint, Leslie E.
    Schwartz, Lawrence H.
    Sundaram, Baskaran
    Dodd, Lori E.
    Fenimore, Charles
    Gur, David
    Petrick, Nicholas
    Freymann, John
    Kirby, Justin
    Hughes, Brian
    Casteele, Alessi Vande
    Gupte, Sangeeta
    Sallam, Maha
    Heath, Michael D.
    Kuhn, Michael H.
    Dharaiya, Ekta
    Burns, Richard
    Fryd, David S.
    MEDICAL PHYSICS, 2011, 38 (02) : 915 - 931