n-POWER-POSINORMAL OPERATORS

被引:0
|
作者
Beiba, El Moctar Ould [1 ]
机构
[1] Univ Nouakchott Al Aasriya, Fac Sci & Tech, Dept Math & Comp Sci, POB 5026, Nouakchott, Mauritania
来源
METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY | 2021年 / 27卷 / 01期
关键词
Posinormal Operators; n-power-Posinormal Operators; Interrupter;
D O I
10.31392/MFAT-npu26_1.2021.03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
B(H) will denote the algebra of all bounded linear operators on a complex Hilbert space H. In [6], the authors proved that natural power of a posinormal operator is not in general posinormal. Precisely, they constructed an example of a posinormal operator with square not being posinormal. Given a positive integer n, the aim of this article is to study a class of operators in B(H) called n-power-posinormal. This class is invariant under natural power and contains any natural power of any posinormal operator and all n-power normal operators.
引用
收藏
页码:18 / 24
页数:7
相关论文
共 50 条
  • [1] POSINORMAL OPERATORS
    RHALY, HC
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1994, 46 (04) : 587 - 605
  • [2] POWERS OF POSINORMAL OPERATORS
    Kubrusly, C. S.
    Vieira, P. C. M.
    Zanni, J.
    OPERATORS AND MATRICES, 2016, 10 (01): : 15 - 27
  • [3] A superclass of the posinormal operators
    Rhaly, H. Crawford, Jr.
    NEW YORK JOURNAL OF MATHEMATICS, 2014, 20 : 497 - 506
  • [4] Weyl's theorems for posinormal operators
    Duggal, BP
    Kubrusly, C
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (03) : 529 - 541
  • [5] ANALYTIC EXTENSION OF TOTALLY POLYNOMIALLY POSINORMAL OPERATORS
    Mecheri, Salah
    Prasad, T.
    MATHEMATICAL REPORTS, 2021, 23 (03): : 359 - 372
  • [6] A functional model for polynomially posinormal operators
    Stoyko Kostov
    Ivan Todorov
    Integral Equations and Operator Theory, 2001, 40 : 61 - 79
  • [7] A functional model for polynomially posinormal operators
    Kostov, S
    Todorov, I
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2001, 40 (01) : 61 - 79
  • [8] Subscalarity for extension of totally polynomially posinormal operators
    T. Prasad
    Positivity, 2023, 27
  • [9] Totally P-posinormal operators are subscalar
    R. Nickolov
    Zh. Zhelev
    Integral Equations and Operator Theory, 2002, 43 : 346 - 355
  • [10] Closed-range posinormal operators and their products
    Bourdon, Paul
    Kubrusly, Carlos
    Le, Trieu
    Thompson, Derek
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2023, 671 : 38 - 58