Comparing four bankruptcy prediction models: Logit, quadratic interval logit, neural and fuzzy neural networks

被引:99
|
作者
Tseng, Fang-Mei [1 ]
Hu, Yi-Chung [2 ]
机构
[1] Yuan Ze Univ, Dept Int Business, Chungli 32003, Taiwan
[2] Chung Yuan Christian Univ, Dept Business Adm, Zhongli, Taiwan
关键词
Bankruptcy forecasting; Logit model; Quadratic interval logit model; FINANCIAL RATIOS; DISCRIMINANT-ANALYSIS; GENETIC ALGORITHMS; IDENTIFICATION; OUTLIERS; FAILURE; SYSTEMS;
D O I
10.1016/j.eswa.2009.07.081
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Bankruptcy prediction is one of the major business classification problems. In this paper, we use four different techniques (1) logit model, (2) quadratic interval logit model, (3) backpropagation multi-layer perceptron (i.e., MLP), and (4) radial basis function network (i.e., RBFN) to predict bankrupt and non-bankrupt firms in England. The average hit ratio of four methods range from 91.15% to 77.05%. The original classification accuracy and the validation test results indicate that RBFN outperforms the other models. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1846 / 1853
页数:8
相关论文
共 50 条