Generalized invariants and quantum evolution of open fermionic systems

被引:15
|
作者
Kim, SP [1 ]
Santana, AE
Khanna, FC
机构
[1] Kunsan Natl Univ, Dept Phys, Kunsan 573701, South Korea
[2] Univ Fed Bahia, Inst Fis, BR-40210340 Salvador, BA, Brazil
[3] Univ Alberta, Dept Phys, Inst Theoret Phys, Edmonton, AB T6J 2J1, Canada
[4] TRIUMF, Vancouver, BC V6T 2A3, Canada
基金
加拿大自然科学与工程研究理事会; 新加坡国家研究基金会;
关键词
D O I
10.1016/S0375-9601(00)00406-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Open systems acquire time-dependent coupling constants through interaction with an external field or environment. We generalize the Lewis-Riesenfeld invariant theorem to open system of quantum fields after second quantizarion. The generalized invariants and thereby the quantum evolution are found explicity for time-dependent quadratic fermionic systems. The pair production of fermions is computed and other physical implications an discussed. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 50 条
  • [1] Generalized quantum mechanics for fermionic systems
    Kopf, T
    Craig, DA
    PARTICLES AND THE UNIVERSE, 1998, : 561 - 568
  • [2] OPEN FERMIONIC QUANTUM-SYSTEMS
    ARTACHO, E
    FALICOV, LM
    PHYSICAL REVIEW B, 1993, 47 (03): : 1190 - 1198
  • [3] Dynamical invariants of open quantum systems
    Wu, S. L.
    Zhang, X. Y.
    Yi, X. X.
    PHYSICAL REVIEW A, 2015, 92 (06):
  • [4] Molecular transistors as open fermionic quantum systems
    Etchegoin, P
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 313 (3-4) : 488 - 502
  • [5] DYNAMICAL INVARIANTS FOR TIME-EVOLUTION OF OPEN QUANTUM-SYSTEMS IN FINITE DIMENSIONS
    LENDI, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (03): : 609 - 630
  • [6] Efficient simulation of open quantum systems coupled to a fermionic bath
    Nuesseler, Alexander
    Dhand, Ish
    Huelga, Susana F.
    Plenio, Martin B.
    PHYSICAL REVIEW B, 2020, 101 (15)
  • [7] Generalized transitionless quantum driving for open quantum systems
    Santos, Alan C.
    Sarandy, Marcelo S.
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [8] TIME EVOLUTION OF QUADRATIC QUANTUM SYSTEMS: EVOLUTION OPERATORS, PROPAGATORS, AND INVARIANTS
    Nagiyev, Sh. M.
    Ahmadov, A. I.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2019, 198 (03) : 392 - 411
  • [9] Time Evolution of Quadratic Quantum Systems: Evolution Operators, Propagators, and Invariants
    Sh. M. Nagiyev
    A. I. Ahmadov
    Theoretical and Mathematical Physics, 2019, 198 : 392 - 411
  • [10] Dynamical invariants and nonadiabatic geometric phases in open quantum systems
    Sarandy, M. S.
    Duzzioni, E. I.
    Moussa, M. H. Y.
    PHYSICAL REVIEW A, 2007, 76 (05):