CATEGORICAL PROOF THEORY OF CO-INTUITIONISTIC LINEAR LOGIC

被引:3
|
作者
Bellin, Gianluigi [1 ]
机构
[1] Univ Verona, Dipartimento Informat, I-37134 Verona, Italy
关键词
Categorical Proof Theory; Intuitionistic duality; Categorical Semantics of Intuitionistic Linear Logic; Semantics of coroutines and concurrent computations; PI-CALCULUS;
D O I
10.2168/LMCS-10(3:16)2014
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
To provide a categorical seniantics for co-intuitionistic logic, one has to face the fact, noted by Tristan Crolard, that the definition of co-exponents as adjuncts of co-products does not work in the category Set, where co-products are disjoint unions. Following the familiar construction of models of intuitionistic linear logic with exponential we build models of co-intuitionistic logic in symmetric monoidal closed categories with additional structure, using a variant of Crolard's term assignment to co-intuitionistic logic in the construction of a free category.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] THE JUDGMENT CALCULUS FOR INTUITIONISTIC LINEAR LOGIC - PROOF THEORY AND SEMANTICS
    VALENTINI, S
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1992, 38 (01): : 39 - 58
  • [2] On the π-calculus and Co-intuitionistic Logic. Notes on Logic for Concurrency and λP Systems
    Bellin, Gianluigi
    Menti, Alessandro
    FUNDAMENTA INFORMATICAE, 2014, 130 (01) : 21 - 65
  • [3] Relating Categorical Semantics for Intuitionistic Linear Logic
    Maria Emilia Maietti
    Paola Maneggia
    Valeria de Paiva
    Eike Ritter
    Applied Categorical Structures, 2005, 13 : 1 - 36
  • [4] Relating categorical semantics for intuitionistic linear logic
    Maietti, ME
    Maneggia, P
    De Paiva, V
    Ritter, E
    APPLIED CATEGORICAL STRUCTURES, 2005, 13 (01) : 1 - 36
  • [5] Categorical models for intuitionistic and linear type theory
    Maietti, ME
    de Paiva, V
    Ritter, E
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES, 2000, 1784 : 223 - 237
  • [6] INTUITIONISTIC LAYERED GRAPH LOGIC: SEMANTICS AND PROOF THEORY
    Docherty, Simon
    Pym, David
    LOGICAL METHODS IN COMPUTER SCIENCE, 2018, 14 (04)
  • [7] A Linear Proof Language for Second-Order Intuitionistic Linear Logic
    Diaz-Caro, Alejandro
    Dowek, Gilles
    Ivnisky, Malena
    Malherbe, Octavio
    LOGIC, LANGUAGE, INFORMATION, AND COMPUTATION, WOLLIC 2024, 2024, 14672 : 18 - 35
  • [8] Proof-Theoretic Semantics for Intuitionistic Multiplicative Linear Logic
    Gheorghiu, Alexander V.
    Gu, Tao
    Pym, David J.
    AUTOMATED REASONING WITH ANALYTIC TABLEAUX AND RELATED METHODS, TABLEAUX 2023, 2023, 14278 : 367 - 385
  • [9] Proof-theoretic Semantics for Intuitionistic Multiplicative Linear Logic
    Gheorghiu, Alexander V.
    Gu, Tao
    Pym, David J.
    STUDIA LOGICA, 2024,
  • [10] THE SEMANTICS AND PROOF THEORY OF LINEAR LOGIC
    AVRON, A
    THEORETICAL COMPUTER SCIENCE, 1988, 57 (2-3) : 161 - 184