Poisson QMLE of Count Time Series Models

被引:81
|
作者
Ahmad, Ali [1 ]
Francq, Christian [1 ,2 ]
机构
[1] Univ Lille 3, Villeneuve Dascq, France
[2] CREST, Crest, France
关键词
Boundary of the parameter space; consistency and asymptotic normality; integer-valued AR and GARCH models; non-normal asymptotic distribution; Poisson quasi-maximum likelihood estimator; time series of counts; QUASI-LIKELIHOOD FUNCTIONS; VALUED GARCH MODELS; REGRESSION; ERGODICITY;
D O I
10.1111/jtsa.12167
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Regularity conditions are given for the consistency of the Poisson quasi-maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer-valued autoregressive (INAR) and integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided.
引用
收藏
页码:291 / 314
页数:24
相关论文
共 50 条