On the exact analytical solution of some families of equilibrium critical thickness transcendental equations

被引:12
|
作者
Perovich, Slavica M. [1 ,2 ]
Calasan, Martin P. [1 ]
Toskovic, Ranko [3 ]
机构
[1] Univ Montenegro, Dept Elect Engn, Podgorica 81000, Montenegro
[2] Univ Montenegro, Fac Maritime Studies, Kotor 81000, Montenegro
[3] Delft Univ Technol, Dept Quantum Nanosci, NL-2600 Delft, Netherlands
来源
AIP ADVANCES | 2014年 / 4卷 / 11期
关键词
D O I
10.1063/1.4902161
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The problem of finding an exact analytical closed-form solution of some families of transcendental equations, which describe the equilibrium critical thickness of misfit dislocation generation in epitaxial thin films, is studied in some detail by the Special Trans Functions Theory (STFT). A novel STFT mathematical approach with an analytical closed-form solution is presented. Structure of the STFT exact solutions, numerical results and graphical simulations confirm the validity of the basic principle of the STFT. The proposed STFT analytical approach shows qualitative improvement in theoretical sense (a novel gradient coefficient genesis), and, in accuracy when compared to the conventional analytical and numerical methods. (C) 2014 Author(s).
引用
收藏
页数:8
相关论文
共 50 条
  • [1] On the analytical solution of some families of transcendental equations
    Perovich, S. M.
    Simic, S. K.
    Tosic, D. V.
    Bauk, S. I.
    APPLIED MATHEMATICS LETTERS, 2007, 20 (05) : 493 - 498
  • [2] Concerning an analytical solution of some families of Kepler's transcendental equation
    Perovich, Slavica M.
    Calasan, Martin
    Kovac, Drasko
    Tosic, Ivana
    AIP ADVANCES, 2016, 6 (03)
  • [3] SOLUTION OF SOME TRANSCENDENTAL EQUATIONS
    UBEROI, C
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 1966, 48 (04): : 127 - &
  • [4] On the Exact Analytical Solutions of Certain Lambert Transcendental Equations
    Perovich, S. M.
    Tosic, D. V.
    Bauk, S. I.
    Kordic, S.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2011, 2011
  • [5] Concerning an analytical solution of some families of nonlinear functional equations
    Perovich, S. M.
    Bauk, S. I.
    Jovanovic, M. Dj.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, 2007, 936 : 412 - +
  • [6] Exact Analytical Solution for the Critical Layer Thickness of a Lattice-Mismatched Heteroepitaxial Layer
    Belgacem, C. Hadj
    Fnaiech, M.
    JOURNAL OF ELECTRONIC MATERIALS, 2010, 39 (10) : 2248 - 2250
  • [7] Exact Analytical Solution for the Critical Layer Thickness of a Lattice-Mismatched Heteroepitaxial Layer
    C. Hadj Belgacem
    M. Fnaiech
    Journal of Electronic Materials, 2010, 39 : 2248 - 2250
  • [8] EXACT ANALYTICAL SOLUTION OF COUPLED LANDAU EQUATIONS
    SHIVAMOGGI, BK
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1992, 72 (07): : 306 - 308
  • [9] EXACT ANALYTICAL SOLUTION OF AN ELEMENTARY CRITICAL CONDITION
    SIEWERT, CE
    NUCLEAR SCIENCE AND ENGINEERING, 1973, 51 (01) : 78 - 78
  • [10] Analytical Solution of the Equilibrium Equations for Nonthin Electroelastic Transversely Isotropic Plates Polarized Through the Thickness
    Khoma I.Y.
    International Applied Mechanics, 2014, 50 (04) : 430 - 445