Observation-Level and Parametric Interaction for High-Dimensional Data Analysis

被引:25
|
作者
Self, Jessica Zeitz [1 ]
Dowling, Michelle [2 ]
Wenskovitch, John [2 ]
Crandell, Ian [3 ]
Wang, Ming [2 ]
House, Leanna [3 ]
Leman, Scotland [3 ]
North, Chris [2 ]
机构
[1] Univ Mary Washington, Dept Comp Sci, 1301 Coll Ave, Fredericksburg, VA 22401 USA
[2] Virginia Tech, Dept Comp Sci, 225 Stanger St, Blacksburg, VA 24061 USA
[3] Virginia Tech, Dept Stat, 250 Drillfield Dr, Blacksburg, VA 24061 USA
基金
美国国家科学基金会;
关键词
Usability; user interface; visual analytics; dimension reduction; interaction; evaluation; data analysis; SEMANTIC INTERACTION; VISUALIZATION; REDUCTION;
D O I
10.1145/3158230
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Exploring high-dimensional data is challenging. Dimension reduction algorithms, such as weighted multidimensional scaling, support data exploration by projecting datasets to two dimensions for visualization. These projections can be explored through parametric interaction, tweaking underlying parameterizations, and observation-level interaction, directly interacting with the points within the projection. In this article, we present the results of a controlled usability study determining the differences, advantages, and drawbacks among parametric interaction, observation-level interaction, and their combination. The study assesses both interaction technique effects on domain-specific high-dimensional data analyses performed by non-experts of statistical algorithms. This study is performed using Andromeda, a tool that enables both parametric and observation-level interaction to provide in-depth data exploration. The results indicate that the two forms of interaction serve different, but complementary, purposes in gaining insight through steerable dimension reduction algorithms.
引用
收藏
页数:36
相关论文
共 50 条
  • [1] Comparison of exact parametric tests for high-dimensional data
    Kropf, Siegfried
    Laeuter, Juergen
    Kose, Daniela
    von Rosen, Dietrich
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2009, 53 (03) : 776 - 787
  • [2] Data-driven segmentation of observation-level logistic regression models
    Choi, Yunjin
    Park, No-Wook
    Lee, Woojoo
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2025,
  • [3] High-dimensional data analysis and visualisation
    Chen, Cathy W. S.
    Lombardo, Rosaria
    Ripamonti, Enrico
    COMPUTATIONAL STATISTICS, 2024, 39 (01) : 1 - 2
  • [4] Procrustes Analysis for High-Dimensional Data
    Andreella, Angela
    Finos, Livio
    PSYCHOMETRIKA, 2022, 87 (04) : 1422 - 1438
  • [5] Procrustes Analysis for High-Dimensional Data
    Angela Andreella
    Livio Finos
    Psychometrika, 2022, 87 : 1422 - 1438
  • [6] High-dimensional data analysis and visualisation
    Cathy W. S. Chen
    Rosaria Lombardo
    Enrico Ripamonti
    Computational Statistics, 2024, 39 : 1 - 2
  • [7] Interaction Detection with Random Forests in High-Dimensional Data
    Winham, Stacey
    Wang, Xin
    de Andrade, Mariza
    Freimuth, Robert
    Colby, Colin
    Huebner, Marianne
    Biernacka, Joanna
    GENETIC EPIDEMIOLOGY, 2012, 36 (02) : 142 - 142
  • [8] Integrative analysis of individual-level data and high-dimensional summary statistics
    Fu, Sheng
    Deng, Lu
    Zhang, Han
    Qin, Jing
    Yu, Kai
    BIOINFORMATICS, 2023, 39 (04)
  • [9] Ant colony algorithm for analysis of gene interaction in high-dimensional association data
    Rekaya, Romdhane
    Robbins, Kelly
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2009, 38 : 93 - 97
  • [10] Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data
    Zhou, Fei
    Ren, Jie
    Liu, Yuwen
    Li, Xiaoxi
    Wang, Weiqun
    Wu, Cen
    GENES, 2022, 13 (03)