Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets

被引:78
|
作者
Vareslija, Damir [1 ]
Priedigkeit, Nolan [5 ,7 ]
Fagan, Ailis [1 ]
Purcell, Siobhan [1 ]
Cosgrove, Nicola [1 ]
O'Halloran, Philip J. [2 ]
Ward, Elspeth [1 ]
Cocchiglia, Sinead [1 ]
Hartmaier, Ryan [5 ]
Castro, Carlos A. [7 ]
Zhu, Li [8 ]
Tseng, George C. [8 ]
Lucas, Peter C. [3 ]
Puhalla, Shannon L. [4 ]
Brufsky, Adam M. [4 ,5 ]
Hamilton, Ronald L. [3 ]
Mathew, Aju [4 ]
Leone, Jose P. [4 ]
Basudan, Ahmed
Hudson, Lance [11 ]
Dwyer, Roisin [12 ]
Das, Sudipto [10 ]
O'Connor, Darran P. [10 ]
Buckley, Patrick G. [9 ]
Farrell, Michael [9 ]
Hill, Arnold D. K. [11 ]
Oesterreich, Steffi [5 ,7 ]
Lee, Adrian V. [5 ,6 ,7 ]
Young, Leonie S. [1 ]
机构
[1] Royal Coll Surgeons Ireland, Endocrine Oncol Res Grp, Dept Surg, Dublin, Ireland
[2] Beaumont Hosp, Dept Neurosurg, Natl Neurosurg Ctr, Dublin, Ireland
[3] Univ Pittsburgh, Dept Pathol, Canc Inst, Pittsburgh, PA 15260 USA
[4] Univ Pittsburgh, Dept Med, Canc Inst, Pittsburgh, PA 15260 USA
[5] Univ Pittsburgh, Dept Pharmacol & Chem Biol, Canc Inst, Pittsburgh, PA 15260 USA
[6] Univ Pittsburgh, Dept Human Genet, Canc Inst, Pittsburgh, PA 15260 USA
[7] Univ Pittsburgh, Womens Canc Res Ctr, Magee Womens Res Inst, Canc Inst, Pittsburgh, PA 15260 USA
[8] Univ Pittsburgh, Dept Biostat, Canc Inst, Pittsburgh, PA 15260 USA
[9] Royal Coll Surgeons Ireland, Dept Neuropathol, Dublin, Ireland
[10] Royal Coll Surgeons Ireland, Dept Mol & Cellular Therapeut, Dublin, Ireland
[11] Royal Coll Surgeons Ireland, Dept Surg Res, Dublin, Ireland
[12] Natl Univ Ireland, Discipline Surg, Sch Med, Lambe Inst Translat Res, Galway, Ireland
来源
基金
爱尔兰科学基金会; 美国国家卫生研究院;
关键词
LAPATINIB PLUS CAPECITABINE; CANCER CELLS; RET; XENOGRAFTS; INHIBITION; REVEALS; CABOZANTINIB; RESISTANCE; LANDSCAPE; EVOLUTION;
D O I
10.1093/jnci/djy110
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Breast cancer brain metastases (BrMs) are defined by complex adaptations to both adjuvant treatment regimens and the brain microenvironment. Consequences of these alterations remain poorly understood, as does their potential for clinical targeting. We utilized genome-wide molecular profiling to identify therapeutic targets acquired in metastatic disease. Methods: Gene expression profiling of 21 patient-matched primary breast tumors and their associated brain metastases was performed by TrueSeq RNA-sequencing to determine clinically actionable BrM target genes. Identified targets were functionally validated using small molecule inhibitors in a cohort of resected BrM ex vivo explants (n = 4) and in a patient-derived xenograft (PDX) model of BrM. All statistical tests were two-sided. Results: Considerable shifts in breast cancer cell-specific gene expression profiles were observed (1314 genes upregulated in BrM; 1702 genes downregulated in BrM; DESeq; fold change > 1.5, P-adj < .05). Subsequent bioinformatic analysis for readily druggable targets revealed recurrent gains in RET expression and human epidermal growth factor receptor 2 (HER2) signaling. Small molecule inhibition of RET and HER2 in ex vivo patient BrM models (n = 4) resulted in statistically significantly reduced proliferation (P < .001 in four of four models). Furthermore, RET and HER2 inhibition in a PDX model of BrM led to a statistically significant antitumor response vs control (n = 4, % tumor growth inhibition [mean difference; SD], anti-RET = 86.3% [1176; 258.3], P < .001; anti-HER2 = 91.2% [1114; 257.9], P < .01). Conclusions: RNA-seq profiling of longitudinally collected specimens uncovered recurrent gene expression acquisitions in metastatic tumors, distinct from matched primary tumors. Critically, we identify aberrations in key oncogenic pathways and provide functional evidence for their suitability as therapeutic targets. Altogether, this study establishes recurrent, acquired vulnerabilities in BrM that warrant immediate clinical investigation and suggests paired specimen expression profiling as a compelling and underutilized strategy to identify targetable dependencies in advanced cancers.
引用
收藏
页码:388 / 398
页数:11
相关论文
共 50 条
  • [1] Transcriptome Characterization of Matched Primary Breast and Brain Metastatic Tumors to Detect Novel Actionable Targets (vol 111, pg 388, 2019)
    Vareslija, Damir
    JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2021, 113 (02): : 218 - 218
  • [2] Expression of drug targets in primary and matched metastatic renal cell carcinoma tumors
    Aziz, Saadia A.
    Sznol, Joshua A.
    Adeniran, Adebowale
    Parisi, Fabio
    Kluger, Yuval
    Camp, Robert L.
    Kluger, Harriet M.
    BMC CLINICAL PATHOLOGY, 2013, 13
  • [3] Whole-exome and transcriptome sequencing in patients with refractory metastatic germ cell tumors identifies actionable targets
    Zschaebitz, S.
    Jenzer, M.
    Froehling, S.
    Horak, P.
    Kreuter, R.
    Dietrich, M.
    Duensing, S.
    Jaeger, D.
    Gruellich, C.
    ONCOLOGY RESEARCH AND TREATMENT, 2018, 41 : 325 - 325
  • [4] Concordance of genomic alterations between primary and metastatic matched breast tumors
    Gaba, Anu G.
    Powell, Steven F.
    Thompson, Paul A.
    Landsverk, Megan L.
    Chan, Chun-Hung
    Weiss, Jennifer L.
    Black, Lora J.
    Ford, James M.
    CANCER RESEARCH, 2016, 76
  • [5] Actionable Molecular Biomarkers in Primary Brain Tumors
    Staedtke, Verena
    Dzaye, Omar Dildar A.
    Holdhoff, Matthias
    TRENDS IN CANCER, 2016, 2 (07): : 338 - 349
  • [6] The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets
    Yang, Guang
    Lu, Tao
    Weisenberger, Daniel J.
    Liang, Gangning
    GENES, 2022, 13 (09)
  • [7] Multiplatform analysis of matched primary and metastatic breast tumors from the AURORA US Network
    King, Tari A.
    Liu, Minetta C.
    McClure, Marni B.
    Hinoue, Toshinori
    Kelly, Benjamin J.
    Creighton, Chad J.
    Bowen, Jay
    Leraas, Kristen
    Burns, Robyn T.
    Coppens, Sara
    Rezk, Salma
    Garrett, Amy L.
    Balko, Justin M.
    Parker, Joel S.
    Park, Ben H.
    Krop, Ian
    Anders, Carey
    Hoadley, Katherine A.
    Gastier-Foster, Julie
    Rimawi, Mothaffar F.
    Nanda, Rita
    Lin, Nancy U.
    Isaacs, Claudine
    Marcom, P. Kelly
    Storniolo, Anna Maria
    Couch, Fergus J.
    Mardis, Elaine R.
    Lee, Adrian V.
    Chandran, Uma
    Laird, Peter W.
    Hilsenbeck, Susan G.
    Norton, Larry
    Richardson, Andrea L.
    Symmans, W. Fraser
    Carey, Lisa A.
    Wolff, Antonio C.
    Davidson, Nancy E.
    Perou, Charles M.
    CANCER RESEARCH, 2020, 80 (04)
  • [8] Clinical genomic profiling of 1000 metastatic breast cancer patients: actionable targets, novel alterations, and clinical correlations
    Razavi, Pedram
    Chang, Matthew T.
    Middha, Sumit
    Ross, Dara S.
    Zehir, Ahmet
    Proverbs-Singh, Tracy A.
    Kandoth, Cyriac
    Chandarlapaty, Sarat
    Dickler, Maura N.
    Reis-Filho, Jorge S.
    Patil, Sujata
    Seshan, Venkatraman
    Smyth, Lillian
    Lyengar, Neil M.
    Jhaveri, Komal
    Modi, Shanu
    Dang, Chau T.
    Robson, Mark E.
    Norton, Larry
    Hudis, Clifford A.
    Ladanyi, Marc
    Scaltriti, Maurizio
    Schultz, Nikolaus
    Hyman, David
    Berger, Michael F.
    Taylor, Barry S.
    Solit, David B.
    Baselga, Jose
    CANCER RESEARCH, 2016, 76
  • [9] Comparative transcriptome analysis of matched primary and distant metastatic ovarian carcinoma
    Sallinen, H.
    Janhonen, S.
    Polonen, P.
    Niskanen, H.
    Liu, O. H.
    Kivela, A.
    Hartikainen, J. M.
    Anttila, M.
    Heinaeniemi, M.
    Yla-Herttuala, S.
    Kaikkonen, M. U.
    BMC CANCER, 2019, 19 (01)
  • [10] Comparative transcriptome analysis of matched primary and distant metastatic ovarian carcinoma
    H. Sallinen
    S. Janhonen
    P. Pölönen
    H. Niskanen
    O. H. Liu
    A. Kivelä
    J. M. Hartikainen
    M. Anttila
    M. Heinäniemi
    S. Ylä-Herttuala
    M. U. Kaikkonen
    BMC Cancer, 19