Neuroimaging studies have shown that local brain lesions could result in abnormal information transfer far from the lesion site in acute ischemic stroke (AIS) patients; yet, little is known about alternations of the topological organization of whole-brain networks in AIS. By using resting state functional magnetic resonance imaging (MRI) and graph theory analysis, we systematically investigated the topological properties of the functional brain networks of 28 healthy controls (HC, age: 56.9 +/- 0.45 years) and 29 AIS (age: 57.6 +/- 0.21 years) with proximal anterior circulation occlusion within 12 h of symptom onset. In our results, both the AIS and HC groups exhibited small-world network organization, suggesting a functional balance between local specialization and global integration. However, compared with the HC, the AIS patients had a lower shortest path length and higher global efficiency, indicating a tendency of randomization in patients' functional brain networks. The AIS patients had an increased nodal degree in the precuneus (PCUN), middle frontal gyrus (MFG), medial part of the superior frontal gyrus (SFGmed), orbital part of the middle frontal gyrus, and the opercular part of the inferior frontal gyrus, and increased nodal efficiency in the PUCN, MFG, SFGmed, and the angular gyrus. The decreased nodal degree in AIS was found in the heschl gyrus (HES), and no significant decreased nodal efficiency was observed. The dysfunctional connections were mainly concentrated in the HES and prefrontal cortex. Furthermore, the altered nodal centrality of the MFG and abnormal functional connectivity in AIS were associated with patients' Mini-Mental State Examination scores. These results suggested that interrupted functional connectivity in language system organization after focal brain lesions could also result in disruptions in the topological organization of other brain circuits, and this may contribute to disturbances in cognition in AIS patients.