Automated detection and classification of the proximal humerus fracture by using deep learning algorithm

被引:294
|
作者
Chung, Seok Won [1 ]
Han, Seung Seog [3 ]
Lee, Ji Whan [1 ]
Oh, Kyung-Soo [1 ]
Kim, Na Ra [2 ]
Yoon, Jong Pil [4 ]
Kim, Joon Yub [5 ]
Moon, Sung Hoon [6 ]
Kwon, Jieun [7 ]
Lee, Hyo-Jin [8 ,9 ]
Noh, Young-Min [10 ]
Kim, Youngjun [11 ]
机构
[1] Konkuk Univ, Sch Med, Dept Orthopaed Surg, Seoul, South Korea
[2] Konkuk Univ, Sch Med, Dept Radiol, Seoul, South Korea
[3] I Dermatol Clin, Dept Dermatol, Seoul, South Korea
[4] Kyungpook Natl Univ, Coll Med, Dept Orthopaed Surg, Daegu, South Korea
[5] Myungji Hosp, Dept Orthopaed Surg, Goyang, South Korea
[6] Kangwon Natl Univ, Coll Med, Dept Orthopaed Surg, Chunchon, South Korea
[7] Natl Police Hosp, Dept Othopaed Surg, Seoul, South Korea
[8] Catholic Univ, Coll Med, Dept Orthopaed Surg, Seoul, South Korea
[9] St Marys Hosp, Seoul, South Korea
[10] Dong A Univ, Coll Med, Dept Orthopaed Surg, Pusan, South Korea
[11] Korea Inst Sci & Technol, Ctr Bion, Seoul, South Korea
关键词
D O I
10.1080/17453674.2018.1453714
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
引用
收藏
页码:468 / 473
页数:6
相关论文
共 50 条
  • [1] Deep learning for automated hip fracture detection and classification
    Zheng, Z.
    Ryu, B. Y.
    Kim, S. E.
    Song, D. S.
    Kim, S. H.
    Park, J. -W
    Ro, D. H.
    BONE & JOINT JOURNAL, 2025, 107B (02): : 213 - 220
  • [2] An Automated Detection and Classification System of Calcaneal Fracture with Deep Learning Techniques
    Tseng, Yi-Cyuan
    Hsu, Wei-En
    Chen, Yu-An
    Chan, Yu-Wei
    Ciou, Shih-Ting
    Wang, Shun-Ping
    2024 IEEE 48TH ANNUAL COMPUTERS, SOFTWARE, AND APPLICATIONS CONFERENCE, COMPSAC 2024, 2024, : 2238 - 2241
  • [3] An Automated Detection and Classification System of Calcaneal Fracture with Deep Learning Techniques
    Chan, Yu-Wei (ywchan@gm.pu.edu.tw), 1600, Institute of Electrical and Electronics Engineers Inc.
  • [4] Automated Laryngeal Cancer Detection and Classification Using Dwarf Mongoose Optimization Algorithm with Deep Learning
    Mohamed, Nuzaiha
    Almutairi, Reem Lafi
    Abdelrahim, Sayda
    Alharbi, Randa
    Alhomayani, Fahad Mohammed
    Elamin Elnaim, Bushra M.
    Elhag, Azhari A.
    Dhakal, Rajendra
    CANCERS, 2024, 16 (01)
  • [5] Automated sign language detection and classification using reptile search algorithm with hybrid deep learning
    Alsolai, Hadeel
    Alsolai, Leen
    Al-Wesabi, Fahd N.
    Othman, Mahmoud
    Rizwanullah, Mohammed
    Abdelmageed, Amgad Atta
    HELIYON, 2024, 10 (01)
  • [6] Automated Pavement Cracks Detection and Classification Using Deep Learning
    Nafaa, Selvia
    Ashour, Karim
    Mohamed, Rana
    Essam, Hafsa
    Emad, Doaa
    Elhenawy, Mohammed
    Ashqar, Huthaifa I.
    Hassan, Abdallah A.
    Alhadidi, Taqwa I.
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [7] Automated detection & classification of knee arthroplasty using deep learning
    Yi, Paul H.
    Wei, Jinchi
    Kim, Tae Kyung
    Sair, Haris, I
    Hui, Ferdinand K.
    Hager, Gregory D.
    Fritz, Jan
    Oni, Julius K.
    KNEE, 2020, 27 (02): : 535 - 542
  • [8] Automated detection and classification of coronary atherosclerotic plaques on coronary CT angiography using deep learning algorithm
    Liang, Jing
    Zhou, Kefeng
    Chu, Michael P.
    Wang, Yujie
    Yang, Gang
    Li, Hui
    Chen, Wenping
    Yin, Kejie
    Xue, Qiucang
    Zheng, Chao
    Gu, Rong
    Li, Qiaoling
    Chen, Xingbiao
    Sheng, Zhihong
    Chu, Baocheng
    Mu, Dan
    Yu, Hongming
    Zhang, Bing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (06) : 3837 - 3850
  • [9] FRACTURE CLASSIFICATION AND THE PROBLEMS INVOLVED IN FRACTURES OF THE PROXIMAL HUMERUS
    SIEBENROCK, KA
    GERBER, C
    ORTHOPADE, 1992, 21 (02): : 98 - 105
  • [10] Advanced Deep Learning Techniques Applied to Automated Femoral Neck Fracture Detection and Classification
    Simukayi Mutasa
    Sowmya Varada
    Akshay Goel
    Tony T. Wong
    Michael J. Rasiej
    Journal of Digital Imaging, 2020, 33 : 1209 - 1217