Experimental investigation on thermal properties of Al2O3 nanoparticles dispersed paraffin for thermal energy storage applications

被引:28
|
作者
Li, Dong [1 ]
Wang, Zemei [1 ]
Wu, Yangyang [1 ]
Liu, Changyu [1 ]
Arici, Muslum [2 ]
机构
[1] Northeast Petr Univ, Sch Architecture & Civil Engn, Daqing 163318, Peoples R China
[2] Kocaeli Univ, Fac Engn, Dept Mech Engn, Umuttepe Campus, Kocaeli, Turkiye
基金
美国国家科学基金会;
关键词
Thermal properties; Al2O3; nanoparticles; paraffin; two-step method; phase change material; PHASE-CHANGE NANOCOMPOSITES; PERFORMANCE ENHANCEMENT; PHOTOTHERMAL PROPERTIES; HEAT-TRANSFER; PCM; CONDUCTIVITY; STRATEGIES; COMPOSITE; WINDOW; MODEL;
D O I
10.1080/15567036.2021.1916133
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Addition of Al2O3 nanoparticles into paraffin wax is beneficial to improve the thermal conductivity of paraffin wax. Moreover, it has effect on the other thermophysical properties of paraffin wax such as the thermal diffusivity and volumetric heat capacity. In the present paper, the two-step method was used to prepare the nanofluids of Al2O3 nanoparticles and paraffin wax and then the influence of temperature and volume fraction of Al2O3 nanoparticles on the thermal conductivity, thermal diffusivity, and volumetric heat capacity of the nanofluids was investigated. The experimental results show that the changing trend of the above-mentioned properties of Al2O3/paraffin shows a slight regularity with increasing temperature. The thermal conductivity of nanofluids is enhanced at 20 degrees C, and the largest thermal conductivity attained is 0.38 W/m center dot K at the volume fraction of 0.01%, which led to 40% augmentation, compared with paraffin. The thermal diffusivity of nanofluids with the volume fraction 0.01%, 0.1%, and 1% varies by -31%, 13.5%, and -21% in solid state, respectively. Moreover, the volumetric heat capacity fluctuates with the increase in temperature, and the volumetric heat capacity of nanofluids with the volume fraction 0.01% and 0.1% is higher than that of 1% in liquid state.
引用
收藏
页码:8190 / 8200
页数:11
相关论文
共 50 条
  • [1] Investigation on Thermal Energy Storage Properties of Polyethylene Glycol with Hybrid Nanoparticles of Al2O3 and CuO for Solar Thermal Energy Storage
    Pandya, Mohit
    Ansu, A. K.
    Sharma, R. K.
    Tripathi, D.
    Tyagi, V. V.
    Sari, Ahmet
    ECS JOURNAL OF SOLID STATE SCIENCE AND TECHNOLOGY, 2023, 12 (07)
  • [2] Enhancements in thermal properties of binary alkali chloride salt by Al2O3 nanoparticles for thermal energy storage
    Huang, Zizhou
    Li, Qing
    Qiu, Yu
    ENERGY, 2024, 301
  • [3] Experimental investigation of thermal radiative properties of Al2O3-paraffin nanofluid
    Wang, Qiushi
    Wei, Wei
    Li, Dong
    Qi, Hanbing
    Wang, Fuqiang
    Arici, Muslum
    SOLAR ENERGY, 2019, 177 : 420 - 426
  • [4] Al-Si @ Al2O3 @ mullite microcapsules for thermal energy storage: Preparation and thermal properties
    Han, Cangjuan
    Gu, Huazhi
    Zhang, Meijie
    Huang, Ao
    Zhang, Yi
    Wang, Yao
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2020, 217
  • [5] An experimental investigation and modelling of the thermal and caloric properties of nanofluids isopropyl alcohol - Al2O3 nanoparticles
    Zhelezny, Vitaly
    Khliyeva, Olga
    Motovoy, Igor
    Lukianov, Nikolay
    THERMOCHIMICA ACTA, 2019, 678
  • [6] Effect of Al2O3 nanoparticles addition on the thermal characteristics of paraffin wax
    Samara H.
    Hamdan M.
    Al-Oran O.
    International Journal of Thermofluids, 2024, 22
  • [7] Effect of surface modification on the thermophysical properties of ethylene glycol dispersed with Al2O3 nanoparticles for solar thermal applications
    Prasanna, Ardhani Satya Bhanu
    Ramji, Koona
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2024,
  • [8] Experimental Study on Thermal Properties of Nano-TiO2 Embedded Paraffin (NEP) for Thermal Energy Storage Applications
    Kumar, P. Manoj
    Mylsamy, K.
    Saravanakumar, P. T.
    Anandkumar, R.
    Pranav, A.
    MATERIALS TODAY-PROCEEDINGS, 2020, 22 : 2153 - 2159
  • [9] An experimental study on melting heat transfer of paraffin dispersed with Al2O3 nanoparticles in a vertical enclosure
    Ho, C. J.
    Gao, J. Y.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 : 2 - 8
  • [10] Experimental Investigation on Melting of Paraffin in Latent Thermal Energy Storage
    Kirincic, Mateo
    Trp, Anica
    Lenic, Kristian
    Wolf, Igor
    PROCEEDINGS OF THE 14TH INTERNATIONAL RENEWABLE ENERGY STORAGE CONFERENCE 2020 (IRES 2020), 2021, 6 : 193 - 198