CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice

被引:108
|
作者
Ohmori, Tsukasa [1 ]
Nagao, Yasumitsu [2 ]
Mizukami, Hiroaki [3 ]
Sakata, Asuka [4 ]
Muramatsu, Shin-ichi [5 ]
Ozawa, Keiya
Tominaga, Shin-ichi [1 ,6 ]
Hanazono, Yutaka [6 ,7 ]
Nishimura, Satoshi [4 ,8 ,9 ]
Nureki, Osamu [10 ]
Sakata, Yoichi [4 ]
机构
[1] Jichi Med Univ, Sch Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[2] Jichi Med Univ, Ctr Expt Med, Dept Biochem, Shimotsuke, Tochigi 3290498, Japan
[3] Jichi Med Univ, Ctr Mol Med, Div Genet Therapeut, Shimotsuke, Tochigi 3290498, Japan
[4] Jichi Med Univ, Ctr Mol Med, Div Cell & Mol Med, Shimotsuke, Tochigi 3290498, Japan
[5] Jichi Med Univ, Sch Med, Dept Neurol, Shimotsuke, Tochigi 3290498, Japan
[6] Univ Tokyo, Inst Med Sci, Tokyo 1080071, Japan
[7] Jichi Med Univ, Ctr Mol Med, Div Regenerat Med, Shimotsuke, Tochigi 3290498, Japan
[8] Univ Tokyo, Dept Cardiovasc Med, Tokyo 1138655, Japan
[9] Univ Tokyo, Translat Syst Biol & Med Initiat, Tokyo 1138655, Japan
[10] Univ Tokyo, Grad Sch Sci, Dept Biol Sci, Tokyo 1130032, Japan
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
MOUSE MODEL; CRISPR-CAS; GENE; HEMOSTASIS; INHIBITION; EXPRESSION; EFFICIENCY; MUSCLE; LIVER; ZFN;
D O I
10.1038/s41598-017-04625-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Haemophilia B, a congenital haemorrhagic disease caused by mutations in coagulation factor IX gene (F9), is considered an appropriate target for genome editing technology. Here, we describe treatment strategies for haemophilia B mice using the clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system. Administration of adeno-associated virus (AAV) 8 vector harbouring Staphylococcus aureus Cas9 (SaCas9) and single guide RNA (sgRNA) to wild-type adult mice induced a double-strand break (DSB) at the target site of F9 in hepatocytes, sufficiently developing haemophilia B. Mutation-specific gene editing by simultaneous induction of homology-directed repair (HDR) sufficiently increased FIX levels to correct the disease phenotype. Insertion of F9 cDNA into the intron more efficiently restored haemostasis via both processes of non-homologous end-joining (NHEJ) and HDR following DSB. Notably, these therapies also cured neonate mice with haemophilia, which cannot be achieved with conventional gene therapy with AAV vector. Ongoing haemophilia therapy targeting the antithrombin gene with antisense oligonucleotide could be replaced by SaCas9/sgRNA-expressing AAV8 vector. Our results suggest that CRISPR/Cas9-mediated genome editing using an AAV8 vector provides a flexible approach to induce DSB at target genes in hepatocytes and could be a good strategy for haemophilia gene therapy.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] CRISPR/Cas9-mediated genome editing via postnatal administration of AAV vector cures haemophilia B mice
    Tsukasa Ohmori
    Yasumitsu Nagao
    Hiroaki Mizukami
    Asuka Sakata
    Shin-ichi Muramatsu
    Keiya Ozawa
    Shin-ichi Tominaga
    Yutaka Hanazono
    Satoshi Nishimura
    Osamu Nureki
    Yoichi Sakata
    Scientific Reports, 7
  • [2] An AAV vector toolbox for CRISPR/Cas9-mediated genome engineering
    Senis, Elena
    Fatouros, Chronis
    Grosse, Stefanie
    Wiedtke, Ellen
    Niopek, Dominik
    Mueller, Ann-Kristin
    Boerner, Kathleen
    Grimm, Dirk
    HUMAN GENE THERAPY, 2014, 25 (11) : A24 - A25
  • [3] CRISPR/Cas9-mediated genome editing in mice: achievable and challenge
    Wu, Lin
    Chen, Laurie
    Chen, Ying
    Wang, Zhenjuan
    Johnson, Sarah
    TRANSGENIC RESEARCH, 2022, 31 (SUPPL 1) : 26 - 27
  • [4] Mosaicism in CRISPR/Cas9-mediated genome editing
    Mehravar, Maryam
    Shirazi, Abolfazl
    Nazari, Mahboobeh
    Banan, Mehdi
    DEVELOPMENTAL BIOLOGY, 2019, 445 (02) : 156 - 162
  • [5] CRISPR/Cas9-mediated genome editing in plants
    Liu, Xuejun
    Xie, Chuanxiao
    Si, Huaijun
    Yang, Jinxiao
    METHODS, 2017, 121 : 94 - 102
  • [6] CRISPR/Cas9-Mediated Genome Editing in Cancer Therapy
    Ding, Shuai
    Liu, Jinfeng
    Han, Xin
    Tang, Mengfan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (22)
  • [7] CRISPR/Cas9-mediated genome editing in nonhuman primates
    Kang, Yu
    Chu, Chu
    Wang, Fang
    Niu, Yuyu
    DISEASE MODELS & MECHANISMS, 2019, 12 (10)
  • [8] CRISPR/Cas9-mediated genome editing in sea urchins
    Lin, Che-Yi
    Oulhen, Nathalie
    Wessel, Gary
    Su, Yi-Hsien
    ECHINODERMS, PT B, 2019, 151 : 305 - 321
  • [9] Potential pitfalls of CRISPR/Cas9-mediated genome editing
    Peng, Rongxue
    Lin, Guigao
    Li, Jinming
    FEBS JOURNAL, 2016, 283 (07) : 1218 - 1231
  • [10] CRISPR–Cas9-mediated genome editing in apple and grapevine
    Yuriko Osakabe
    Zhenchang Liang
    Chong Ren
    Chikako Nishitani
    Keishi Osakabe
    Masato Wada
    Sadao Komori
    Mickael Malnoy
    Riccardo Velasco
    Michele Poli
    Min-Hee Jung
    Ok-Jae Koo
    Roberto Viola
    Chidananda Nagamangala Kanchiswamy
    Nature Protocols, 2018, 13 : 2844 - 2863