Heterogeneity-Aware Data Placement in Hybrid Clouds

被引:1
|
作者
Marquez, Jack D. [1 ]
Gonzalez, Juan D. [1 ]
Mondragon, Oscar H. [1 ]
机构
[1] Univ Autonoma Occidente, Cali 760030, Valle Del Cauca, Colombia
来源
CLOUD COMPUTING - CLOUD 2019 | 2019年 / 11513卷
基金
美国国家科学基金会;
关键词
Hadoop; HDFS; Integer lineal programming; Genetic algorithm; Data placement; MANAGEMENT; ALGORITHM;
D O I
10.1007/978-3-030-23502-4_13
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In next-generation cloud computing clusters, performance of data-intensive applications will be limited, among other factors, by disks data transfer rates. In order to mitigate performance impacts, cloud systems offering hierarchical storage architectures are becoming commonplace. The Hadoop File System (HDFS) offers a collection of storage policies that exploit different storage types such as RAM DISK, SSD, HDD, and ARCHIVE. However, developing algorithms to leverage heterogeneous storage through an efficient data placement has been challenging. This work presents an intelligent algorithm based on genetic programming which allow to find the optimal mapping of input datasets to storage types on a Hadoop file system.
引用
收藏
页码:177 / 191
页数:15
相关论文
共 50 条
  • [1] A Holistic Heterogeneity-Aware Data Placement Scheme for Hybrid Parallel I/O Systems
    He, Shuibing
    Li, Zheng
    Zhou, Jiang
    Yin, Yanlong
    Xu, Xiaohua
    Chen, Yong
    Sun, Xian-He
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (04) : 830 - 842
  • [2] Orchestration Extensions for Interference- and Heterogeneity-Aware Placement for Data-Analytics
    Tzenetopoulos, Achilleas
    Masouros, Dimosthenis
    Xydis, Sotirios
    Soudris, Dimitrios
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2024, 52 (04) : 298 - 323
  • [3] Heterogeneity-Aware Operator Placement in Column-Store DBMS
    Karnagel, Tomas
    Habich, Dirk
    Schlegel, Benjamin
    Lehner, Wolfgang
    Datenbank-Spektrum, 2014, 14 (03) : 211 - 221
  • [4] Heterogeneity-aware Workload Placement and Migration in Distributed Sustainable Datacenters
    Cheng, Dazhao
    Jiang, Changjun
    Zhou, Xiaobo
    2014 IEEE 28TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, 2014,
  • [5] Heterogeneity-Aware Data Regeneration in Distributed Storage Systems
    Wang, Yan
    Wei, Dongsheng
    Yin, Xunrui
    Wang, Xin
    2014 PROCEEDINGS IEEE INFOCOM, 2014, : 1878 - 1886
  • [6] A Heterogeneity-Aware Region-Level Data Layout for Hybrid Parallel File Systems
    He, Shuibing
    Sun, Xian-He
    Wang, Yang
    Kougkas, Antonis
    Haider, Adnan
    2015 44TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2015, : 340 - 349
  • [7] Green- and Heterogeneity-Aware Partitioning for Data Analytics
    Chakrabarti, Aniket
    Parthasarathy, Srinivasan
    Stewart, Christopher
    2016 IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2016,
  • [8] Data Heterogeneity-Aware Personalized Federated Learning for Diagnosis
    Lin, Huiyan
    Li, Heng
    Jin, Haojin
    Yu, Xiangyang
    Yu, Kuai
    Liang, Chenhao
    Fu, Huazhu
    Liu, Jiang
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2024, 2025, 15188 : 53 - 62
  • [9] Petrel: Heterogeneity-Aware Distributed Deep Learning Via Hybrid Synchronization
    Zhou, Qihua
    Guo, Song
    Qu, Zhihao
    Li, Peng
    Li, Li
    Guo, Minyi
    Wang, Kun
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2021, 32 (05) : 1030 - 1043
  • [10] Random Mobility and Heterogeneity-Aware Hybrid Synchronization for Wireless Sensor Network
    Mantri, Dnyaneshwar S.
    Prasad, Neeli Rashmi
    Prasad, Ramjee
    WIRELESS PERSONAL COMMUNICATIONS, 2018, 100 (02) : 321 - 336