共 34 条
The Impact of Microbiome and Microbiota-Derived Sodium Butyrate on Drosophila Transcriptome and Metabolome Revealed by Multi-Omics Analysis
被引:18
|作者:
Zhou, Fan
[1
]
Liu, Biaodi
[2
]
Liu, Xin
[1
]
Li, Yan
[2
]
Wang, Luoluo
[1
]
Huang, Jia
[1
]
Luo, Guanzheng
[2
]
Wang, Xiaoyun
[1
]
机构:
[1] South China Normal Univ, Sch Life Sci, Inst Insect Sci & Technol, Guangdong Prov Key Lab Insect Dev Biol & Appl Tec, Guangzhou 510631, Peoples R China
[2] Sun Yat Sen Univ, Sch Life Sci, State Key Lab Biocontrol, Guangzhou 510275, Peoples R China
来源:
基金:
中国国家自然科学基金;
关键词:
Drosophila;
microbiome;
transcriptome;
metabolome;
GUT MICROBIOTA;
ENERGY-METABOLISM;
HOMEOSTASIS;
NUTRITION;
SEQUENCES;
BACTERIA;
INSIGHTS;
READS;
MODEL;
DIET;
D O I:
10.3390/metabo11050298
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
The host microbiome plays an important role in regulating physiology through microbiota-derived metabolites during host-microbiome interactions. However, molecular mechanism underly host-microbiome interactions remains to be explored. In this study, we used Drosophila as the model to investigate the influence of microbiome and microbiota-derived metabolite sodium butyrate on host transcriptome and metabolome. We established both a sterile Drosophila model and a conventional Drosophila model to demonstrate the role of sodium butyrate. Using multi-omics analysis, we found that microbiome and sodium butyrate could impact host gene expression patterns in both the sterile Drosophila model and the conventional Drosophila model. The analysis of gut microbial using 16S rRNA sequencing showed sodium butyrate treatment also influenced Drosophila bacterial structures. In addition, Drosophila metabolites identified by ultra-high performance liquid chromatography-MS/MS were shown to be affected by sodium butyrate treatment with lipids as the dominant changed components. Our integrative analysis of the transcriptome, the microbiome, and the metabolome data identified candidate transcripts that are coregulated by sodium butyrate. Taken together, our results reveal the impact of the microbiome and microbiota-derived sodium butyrate on host transcriptome and metabolome, and our work provides a better understanding of host-microbiome interactions at the molecular level with multi-omics data.
引用
收藏
页数:13
相关论文