On Feynman's analysis of the geometry of Keplerian orbits

被引:3
|
作者
Kowen, M
Mathur, H
机构
[1] Shaker Hts High Sch, Shaker Hts, OH 44120 USA
[2] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA
关键词
D O I
10.1119/1.1527029
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
A geometrical construction, introduced by Maxwell and Feynman to demonstrate that closed Keplerian orbits are elliptical, is adapted to show that open Keplerian orbits are hyperbolic or parabolic. (C) 2003 American Association of Physics Teachers.
引用
收藏
页码:397 / 401
页数:5
相关论文
共 50 条
  • [1] Relative motion and the geometry of formations in Keplerian elliptic orbits
    Sengupta, Prasenjit
    Vadali, Srinivas R.
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 2007, 30 (04) : 953 - 964
  • [2] Families of Keplerian orbits
    Butikov, EI
    EUROPEAN JOURNAL OF PHYSICS, 2003, 24 (02) : 175 - 183
  • [3] Metric spaces of Keplerian orbits
    Kholshevnikov, Konstantin V.
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2008, 100 (03): : 169 - 179
  • [4] KEPLERIAN ORBITS AND RUNGE VECTOR
    DULOCK, VA
    AMERICAN JOURNAL OF PHYSICS, 1971, 39 (06) : 713 - &
  • [5] MINIMIZING PROPERTY OF KEPLERIAN ORBITS
    GORDON, WB
    AMERICAN JOURNAL OF MATHEMATICS, 1977, 99 (05) : 961 - 971
  • [6] On a Quotient Space of Keplerian Orbits
    Kholshevnikov, K. V.
    Shchepalova, A. S.
    Jazmati, M. S.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2020, 53 (01) : 108 - 114
  • [7] Metric spaces of Keplerian orbits
    Konstantin V. Kholshevnikov
    Celestial Mechanics and Dynamical Astronomy, 2008, 100 : 169 - 179
  • [8] PARAMETER DISTRIBUTIONS OF KEPLERIAN ORBITS
    Savransky, Dmitry
    Cady, Eric
    Kasdin, N. Jeremy
    ASTROPHYSICAL JOURNAL, 2011, 728 (01):
  • [9] Comment on 'Families of Keplerian orbits'
    Romanovskis, T
    EUROPEAN JOURNAL OF PHYSICS, 2004, 25 (02) : L17 - L19
  • [10] On a Quotient Space of Keplerian Orbits
    K. V. Kholshevnikov
    A. S. Shchepalova
    M. S. Jazmati
    Vestnik St. Petersburg University, Mathematics, 2020, 53 : 108 - 114