Estimation of the energy production of a parabolic trough solar thermal power plant using analytical and artificial neural networks models

被引:33
|
作者
Zaaoumi, Anass [1 ]
Bah, Abdellah [1 ]
Ciocan, Mihaela [2 ]
Sebastian, Patrick [3 ]
Balan, Mugur C. [4 ]
Mechaqrane, Abdellah [5 ]
Alaoui, Mohammed [1 ]
机构
[1] Mohammed V Univ Rabat, Ecole Natl Super Arts & Metiers, ERTE, Ctr Energy, BP 6207, Rabat 10100, Morocco
[2] Univ Politehn Bucuresti, Bucharest, Romania
[3] Univ Bordeaux, CNRS, UMR 5295, I2M, Talence, France
[4] Tech Univ Cluj Napoca, Bd Muncii 103-105, Cluj Napoca 400641, Romania
[5] Sidi Mohamed Ben Abdellah Univ, FST, Lab Renewable Energies & Smart Syst, BP 2202, Fes, Morocco
关键词
Analytical model; Artificial neural networks; Electric production; Parabolic trough collector; Solar thermal power plant; FOSSIL-FUELS; PERFORMANCE; SIMULATION; PREDICTION; COLLECTOR; OPTIMIZATION; MITIGATION; STORAGE; ENGINE;
D O I
10.1016/j.renene.2021.01.129
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The accurate estimation of a concentrated solar power plant production is an important issue because of the fluctuations in meteorological parameters like solar radiation, ambient temperature, wind speed, and humidity. In this work, three models were conducted in order to estimate the hourly electric production of a parabolic trough solar thermal power plant (PTSTPP) located at Ain Beni-Mathar in Eastern Morocco. First, two analytical models are considered. The first analytical model (AM I) is based on calculating the heat losses of parabolic trough collectors (PTCs), while the second analytical model (AM II) is based on the thermal efficiency of PTCs. The third model is an artificial neural networks (ANN) model derived from artificial intelligence techniques. All models are validated using one year of real operating data. The simulation results indicate that the ANN model performs much better than the analytical models. Accordingly, the ANN model results show that the estimated annual electrical energy is about 42.6 GW h/ year, while the operating energy is approximately 44.7 GWh/year. The frequency of occurrence shows that 86.77% of hourly values were estimated with a deviation of less than 3 MW h. The developed ANN model is readily useable to estimate energy production for PTSTPP. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页码:620 / 638
页数:19
相关论文
共 50 条
  • [1] Comparative Energy, Exergy, and Environmental Analyses of Parabolic Trough Solar Thermal Power Plant Using Nanofluids
    Muhammad, Abid
    Ratlamwala, T. A. H.
    Ugur, Atikol
    EXERGY FOR A BETTER ENVIRONMENT AND IMPROVED SUSTAINABILITY 1: FUNDAMENTALS, 2018, : 943 - 967
  • [2] Dynamic Modeling of a Parabolic Trough Solar Thermal Power Plant with Thermal Storage Using Modelica
    Montanes, Ruben M.
    Windahl, Johan
    Palsson, Jens
    Thern, Marcus
    HEAT TRANSFER ENGINEERING, 2018, 39 (03) : 277 - 292
  • [3] Parabolic trough solar thermal power plant Noor I in Morocco
    Aqachmar, Zineb
    Allouhi, Amine
    Jamil, Abdelmajid
    Gagouch, Belgacem
    Kousksou, Tarik
    ENERGY, 2019, 178 : 572 - 584
  • [4] Performance assessment of parabolic dish and parabolic trough solar thermal power plant using nanofluids and molten salts
    Abid, M.
    Ratlamwala, T. A. H.
    Atikol, U.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (04) : 550 - 563
  • [5] Energy and exergy analyses of a parabolic trough solar power plant using carbon dioxide power cycle
    AlZahrani, Abdullah A.
    Dincer, Ibrahim
    ENERGY CONVERSION AND MANAGEMENT, 2018, 158 : 476 - 488
  • [6] LIFE CYCLE ASSESSMENT OF A MODEL PARABOLIC TROUGH CONCENTRATING SOLAR POWER PLANT WITH THERMAL ENERGY STORAGE
    Burkhardt, John J., III
    Heath, Garvin
    Turchi, Craig
    ES2010: PROCEEDINGS OF ASME 4TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2010, : 599 - 608
  • [7] Assessment of the impact of thermal energy storage operation strategy on parabolic trough solar power plant performance
    Bouziane, Hamza
    Benhamou, Brahim
    RENEWABLE ENERGY, 2023, 202 : 713 - 720
  • [8] Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network
    Heng, Shye Yunn
    Asako, Yutaka
    Suwa, Tohru
    Nagasaka, Ken
    RENEWABLE ENERGY, 2019, 131 : 168 - 179
  • [9] ANN-based optimization of a parabolic trough solar thermal power plant
    Boukelia, T. E.
    Arslan, O.
    Mecibah, M. S.
    APPLIED THERMAL ENGINEERING, 2016, 107 : 1210 - 1218
  • [10] Modeling study on continuous operation of parabolic trough solar thermal power plant
    Liu, Bing
    Zhan, Yang
    Tian, Jingkui
    Tian, Zenghua
    Lyu, Junfu
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2019, 40 (12): : 3395 - 3400