Novel geometric gauge invariance of autoparallels

被引:0
|
作者
Kleinert, H [1 ]
Pelster, A [1 ]
机构
[1] Free Univ Berlin, Inst Theoret Phys, D-14195 Berlin, Germany
来源
ACTA PHYSICA POLONICA B | 1998年 / 29卷 / 04期
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We draw attention to a novel type of geometric gauge invariance relating the autoparallel equations of motion in different Riemann-Cartan spacetimes with each other. The novelty lies in the fact that the equations of motion are invariant even though the actions are not. As an application we use this gauge transformation to map the action of a spinless point particle in a Riemann-Cartan spacetime with a gradient torsion to a purely Riemann spacetime, in which the initial torsion appears as a nongeometric external field. By extremizing the transformed action in the usual way, we obtain the same autoparallel equations of motion as those derived in the initial space time with torsion via a recently-discovered variational principle.
引用
收藏
页码:1015 / 1023
页数:9
相关论文
共 50 条
  • [1] GEOMETRIC DEFINITION OF GAUGE INVARIANCE
    LUBKIN, E
    ANNALS OF PHYSICS, 1963, 23 (02) : 233 - 283
  • [2] Vacuum polarization and the geometric phase: Gauge invariance
    Mickelsson, J
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (02) : 831 - 837
  • [3] Gauge invariance and geometric phase in nonequilibrium thermodynamics
    Borlenghi, Simone
    PHYSICAL REVIEW E, 2016, 93 (01)
  • [4] GEOMETRIC REGULARIZATION AND GAUGE-INVARIANCE IN CHERN-SIMONS THEORIES
    ASOREY, M
    FALCETO, F
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (02): : 235 - 256
  • [5] Robustness of Novel Surface Invariance to Geometric Transformation
    Tosranon, P.
    Sanpanish, A.
    Bunluechokchai, S.
    Pintavirooj, C.
    ECTI-CON 2008: PROCEEDINGS OF THE 2008 5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2008, : 533 - +
  • [6] GEOMETRIC SPACE-TIME PERTURBATION .2. GAUGE-INVARIANCE
    MAIA, MD
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (03) : 651 - 653
  • [7] Geometric invariance
    Bottasso C.L.
    Borri M.
    Trainelli L.
    Computational Mechanics, 2002, 29 (02) : 163 - 169
  • [8] GAUGE-INVARIANCE AND A NONLOCAL GAUGE
    IVANOV, SV
    PHYSICS LETTERS B, 1987, 197 (04) : 539 - 542
  • [9] Gauge invariance through gauge fixing
    Wallace, David
    STUDIES IN HISTORY AND PHILOSOPHY OF SCIENCE, 2024, 108 : 38 - 45
  • [10] Gauge invariance and nonconstant gauge couplings
    Mohammedi, N.
    PHYSICAL REVIEW D, 2011, 84 (04):