Using data assimilation to optimize pedotransfer functions using field-scale in situ soil moisture observations

被引:8
|
作者
Cooper, Elizabeth [1 ]
Blyth, Eleanor [1 ]
Cooper, Hollie [1 ]
Ellis, Rich [1 ]
Pinnington, Ewan [3 ]
Dadson, Simon J. [1 ,2 ]
机构
[1] UK Ctr Ecol & Hydrol, Wallingford, Oxon, England
[2] Sch Geog & Environm, South Parks Rd, Oxford OX1 3QY, England
[3] Univ Reading, Natl Ctr Earth Observat, Dept Meteorol, Reading, Berks, England
基金
英国自然环境研究理事会;
关键词
LAND; PRECIPITATION; CATCHMENT; SYSTEM; SKILL; ERROR; JULES;
D O I
10.5194/hess-25-2445-2021
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Soil moisture predictions from land surface models are important in hydrological, ecological, and meteorological applications. In recent years, the availability of wide-area soil moisture measurements has increased, but few studies have combined model-based soil moisture predictions with in situ observations beyond the point scale. Here we show that we can markedly improve soil moisture estimates from the Joint UK Land Environment Simulator (JULES) land surface model using field-scale observations and data assimilation techniques. Rather than directly updating soil moisture estimates towards observed values, we optimize constants in the underlying pedotransfer functions, which relate soil texture to JULES soil physics parameters. In this way, we generate a single set of newly calibrated pedotransfer functions based on observations from a number of UK sites with different soil textures. We demonstrate that calibrating a pedotransfer function in this way improves the soil moisture predictions of a land surface model at 16 UK sites, leading to the potential for better flood, drought, and climate projections.
引用
收藏
页码:2445 / 2458
页数:14
相关论文
共 50 条
  • [1] Field-scale water flow simulations using ensembles of pedotransfer functions for soil water retention
    Guber, AK
    Pachepsky, YA
    van Genuchten, MT
    Rawls, WJ
    Simunek, J
    Jacques, D
    Nicholson, TJ
    Cady, RE
    VADOSE ZONE JOURNAL, 2006, 5 (01) : 234 - 247
  • [2] Quantifying field-scale soil moisture using electrical resistivity imaging
    Schwartz, Benjamin F.
    Schreiber, Mazdeline E.
    Yan, Tingting
    JOURNAL OF HYDROLOGY, 2008, 362 (3-4) : 234 - 246
  • [3] Field-Scale Soil Moisture Pattern Mapping using Electromagnetic Induction
    Martinez, Gonzalo
    Vanderlinden, Karl
    Vicente Giraldez, Juan
    Espejo, Antonio J.
    Luis Muriel, Jose
    VADOSE ZONE JOURNAL, 2010, 9 (04): : 871 - 881
  • [4] Field-scale soil moisture estimation using sentinel-1 GRD SAR data
    Bhogapurapu, Narayanarao
    Dey, Subhadip
    Homayouni, Saeid
    Bhattacharya, Avik
    Rao, Y. S.
    ADVANCES IN SPACE RESEARCH, 2022, 70 (12) : 3845 - 3858
  • [5] FIELD-SCALE SOIL MOISTURE ESTIMATION UNDER CORN AND SOYBEAN CROPS USING AIRBORNE SAR DATA
    Ganesan, Ponnurangam Gramani
    Kim, Seung-Bum
    Liao, Tien-Hao
    Michele, Reba L.
    Cosh, Michael H.
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5489 - 5492
  • [6] Comparison of Met Office regional model soil moisture with COSMOS-UK field-scale in situ observations
    Cooper, Elizabeth
    Charlton-Perez, Cristina
    Ellis, Rich
    ATMOSPHERIC SCIENCE LETTERS, 2024, 25 (08):
  • [7] TOWARDS GLOBAL RETRIEVAL OF FIELD-SCALE SURFACE SOIL MOISTURE USING L-BAND SAR DATA
    Kim, Seungbum
    Liao, Tienhao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5452 - 5455
  • [8] Upscaling of field-scale soil moisture measurements using distributed land surface modeling
    Crow, WT
    Ryu, D
    Famiglietti, JS
    ADVANCES IN WATER RESOURCES, 2005, 28 (01) : 1 - 14
  • [10] In situ field-scale remediation of Cd polluted paddy soil using sepiolite and palygorskite
    Liang, Xuefeng
    Han, Jun
    Xu, Yingming
    Sun, Yuebing
    Wang, Lin
    Tan, Xin
    GEODERMA, 2014, 235 : 9 - 18