Design of multistable systems via partial synchronization

被引:5
|
作者
Khan, Mohammad Ali [1 ]
Nag, Mayurakshi [2 ]
Poria, Swarup [2 ]
机构
[1] Ramananda Coll, Dept Math, Bishnupur 722122, India
[2] Univ Calcutta, Dept Appl Math, Kolkata 700009, India
来源
PRAMANA-JOURNAL OF PHYSICS | 2017年 / 89卷 / 02期
关键词
Multistability; Lorenz system; Lu system; bifurcation analysis; synchronization; CHAOTIC SYSTEMS;
D O I
10.1007/s12043-017-1422-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Many researchers introduce schemes for designing multistable systems by coupling two identical systems. In this paper, we introduce a generalized scheme for designing multistable systems by coupling two different dynamical systems. The basic idea of the scheme is to design partial synchronization of states between the coupled systems and finding some completely initial condition-dependent constants of motion. In our scheme, we synchronize i number ( 1 <= i <= m - 1) of state variables completely and keep constant difference between j ( 1 <= j <= m - 1, i + j = m) number of state variables of two coupled m-dimensional different dynamical systems to obtain multistable behaviour. We illustrate our scheme for coupled Lorenz and Lu systems. Numerical simulation results consisting of phase diagram, bifurcation diagram and maximum Lyapunov exponents are presented to show the effectiveness of our scheme.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Design of multistable systems via partial synchronization
    Mohammad Ali Khan
    Mayurakshi Nag
    Swarup Poria
    Pramana, 2017, 89
  • [2] Synchronization of multistable systems
    Pisarchik, A. N.
    Jaimes-Reategui, R.
    Garcia-Lopez, J. H.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2008, 18 (06): : 1801 - 1819
  • [3] Robust Synchronization for Multistable Systems
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    Perruquetti, Wilfrid
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (06) : 1625 - 1630
  • [4] On conditions of robust synchronization for multistable systems
    Ahmed, Hafiz
    Ushirobira, Rosane
    Efimov, Denis
    Perruquetti, Wilfrid
    2015 EUROPEAN CONTROL CONFERENCE (ECC), 2015, : 181 - 185
  • [5] Synchronization in Coupled Multistable Systems with Hidden Attractors
    Gokul, P. M.
    Kapitaniak, Tomasz
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [6] Synchronization of Partial Differential Systems via Diffusion Coupling
    Wu, Kaining
    Chen, Bor-Sen
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (11) : 2655 - 2668
  • [7] Synchronization of intermittent behavior in ensembles of multistable dynamical systems
    Sevilla-Escoboza, R.
    Buldu, J. M.
    Pisarchik, A. N.
    Boccaletti, S.
    Gutierrez, R.
    PHYSICAL REVIEW E, 2015, 91 (03)
  • [8] Generalized multistable structure via chaotic synchronization and preservation of scrolls
    Jimenez-Lopez, E.
    Gonzalez Salas, J. S.
    Ontanon-Garcia, L. J.
    Campos-Canton, E.
    Pisarchik, A. N.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2013, 350 (10): : 2853 - 2866
  • [9] Synchronization of unidirectional coupled chaotic systems via partial stability
    Ge, ZM
    Chen, YS
    CHAOS SOLITONS & FRACTALS, 2004, 21 (01) : 101 - 111
  • [10] Chaos synchronization via controlling partial state of chaotic systems
    Yu, XH
    Song, YX
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2001, 11 (06): : 1737 - 1741