EQUIVARIANT ALGEBRAIC INDEX THEOREM

被引:8
|
作者
Gorokhovsky, Alexander [1 ]
de Kleijn, Niek [1 ]
Nest, Ryszard [1 ]
机构
[1] Univ Copenhagen, Nat & Biovidenskabelige Fak, Math, Univ Pk 5, DK-2100 Copenhagen, Denmark
基金
新加坡国家研究基金会;
关键词
deformation quantization; index theorem; RIEMANN-ROCH THEOREMS; DEFORMATION QUANTIZATION; ELLIPTIC-OPERATORS; COHOMOLOGY;
D O I
10.1017/S1474748019000380
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a Gamma-equivariant version of the algebraic index theorem, where Gamma is a discrete group of automorphisms of a formal deformation of a symplectic manifold. The particular cases of this result are the algebraic version of the transversal index theorem related to the theorem of A. Connes and H. Moscovici for hypo-elliptic operators and the index theorem for the extension of the algebra of pseudodifferential operators by a group of diffeomorphisms of the underlying manifold due to A. Savin, B. Sternin, E. Schrohe and D. Perrot.
引用
收藏
页码:929 / 955
页数:27
相关论文
共 50 条