Scalar Quadratic Maximum-likelihood Estimators for the CMB Cross-power Spectrum

被引:6
|
作者
Chen, Jiming [1 ,2 ]
Ghosh, Shamik [1 ,2 ]
Zhao, Wen [1 ,2 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Dept Astron, CAS Key Lab Res Galaxies & Cosmol, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Astron & Space Sci, Hefei 230026, Peoples R China
来源
基金
国家重点研发计划;
关键词
PRIMORDIAL GRAVITATIONAL-WAVES; GRAVITY-WAVES; POLARIZATION; TEMPERATURE; SIGNATURE; PROBE;
D O I
10.3847/1538-4365/ac679f
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Estimating the cross-correlation power spectra of the cosmic microwave background, in particular, the TB and EB spectra, is important for testing parity symmetry in cosmology and diagnosing insidious instrumental systematics. The quadratic maximum-likelihood (QML) estimator provides optimal estimates of the power spectra, but it is computationally very expensive. The hybrid pseudo-C ( l ) estimator is computationally fast but performs poorly on large scales. As a natural extension of previous work, in this article, we present a new unbiased estimator based on the Smith-Zaldarriaga (SZ) approach of E-B separation and the scalar QML approach to reconstruct the cross-correlation power spectrum, called the QML-SZ estimator. Our new estimator relies on the ability to construct scalar maps, which allows us to use a scalar QML estimator to obtain the cross-correlation power spectrum. By reducing the pixel number and algorithm complexity, the computational cost is nearly one order of magnitude smaller and the running time is nearly two orders of magnitude faster in the test situations.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Fast Scalar Quadratic Maximum Likelihood Estimators for the CMB B-mode Power Spectrum
    Chen, Jiming
    Ghosh, Shamik
    Liu, Hao
    Santos, Larissa
    Fang, Wenjuan
    Li, Siyu
    Liu, Yang
    Li, Hong
    Wang, Jiaxin
    Zhang, Le
    Hu, Bin
    Zhao, Wen
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2021, 257 (02):
  • [2] OPTIMIZED LARGE-SCALE CMB LIKELIHOOD AND QUADRATIC MAXIMUM LIKELIHOOD POWER SPECTRUM ESTIMATION
    Gjerlow, E.
    Colombo, L. P. L.
    Eriksen, H. K.
    Gorski, K. M.
    Gruppuso, A.
    Jewell, J. B.
    Plaszczynski, S.
    Wehus, I. K.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2015, 221 (01):
  • [3] Normalized maximum-likelihood estimators of the directional wave spectrum
    Arribas, M.A.
    Egozcue, J.J.
    Journal of Atmospheric and Oceanic Technology, 1995, 12 (03): : 668 - 673
  • [4] NORMALIZED MAXIMUM-LIKELIHOOD ESTIMATORS OF THE DIRECTIONAL WAVE SPECTRUM
    ARRIBAS, MA
    EGOZCUE, JJ
    JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 1995, 12 (03) : 668 - 673
  • [6] LARGE DEVIATIONS FOR THE MAXIMUM-LIKELIHOOD ESTIMATORS
    MOGULSKII, AA
    LECTURE NOTES IN MATHEMATICS, 1988, 1299 : 326 - 331
  • [7] UNIFORM CONSISTENCY OF MAXIMUM-LIKELIHOOD ESTIMATORS
    MORAN, PAP
    PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1971, 70 (NOV): : 435 - &
  • [8] ON PROGRESSIVELY TRUNCATED MAXIMUM-LIKELIHOOD ESTIMATORS
    INAGAKI, N
    SEN, PK
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1985, 37 (02) : 251 - 269
  • [9] EXAMPLES OF NONUNIQUE MAXIMUM-LIKELIHOOD ESTIMATORS
    DHARMADHIKARI, S
    JOAGDEV, K
    AMERICAN STATISTICIAN, 1985, 39 (03): : 199 - 200
  • [10] ON LOCATION AND SCALE MAXIMUM-LIKELIHOOD ESTIMATORS
    GUPTA, AK
    SZEKELY, GJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 120 (02) : 585 - 589