Model plant systems in salinity and drought stress proteomics studies: a perspective on Arabidopsis and Sorghum

被引:23
|
作者
Ngara, R. [1 ]
Ndimba, B. K. [2 ,3 ]
机构
[1] Univ Free State, Dept Plant Sci, ZA-9866 Phuthaditjhaba, South Africa
[2] Univ Western Cape, Dept Biotechnol, Prote Res Grp, ZA-7535 Bellville, South Africa
[3] Agr Res Council, Prote Res & Serv Unit, Stellenbosch, South Africa
关键词
Arabidopsis; drought stress; model plant systems; proteomics; salinity stress; Sorghum; ABIOTIC STRESS; TOLERANCE; GENOME; RESPONSES; SALT; TRANSFORMATION; MECHANISMS; CEREALS; RICE;
D O I
10.1111/plb.12247
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
More than a decade after the sequencing of its genome, Arabidopsis still stands as the epitome of a model system in plant biology. Arabidopsis proteomics has also taught us great lessons on different aspects of plant growth, development and physiology. Without doubt our understanding of basic principles of plant biology would not have been this advanced if it were not for knowledge gained using Arabidopsis as a model system. However, with the projections of global climate change and rapid population growth, it is high time we evaluate the applicability of this model system in studies aimed at understanding abiotic stress tolerance and adaptation, with a particular emphasis on maintaining yield under hot and dry environmental conditions. Because of the innate nature of sorghum's tolerance to drought and moderate tolerance to salinity stresses, we believe sorghum is the next logical model system in such studies amongst cereals. In this acute view, we highlight the importance of Arabidopsis as a model system, briefly discuss its potential limitations in drought and salt stress studies, and present our views on the potential usefulness of sorghum as a model system for cereals in drought and salinity stress proteomic studies.
引用
收藏
页码:1029 / 1032
页数:4
相关论文
共 50 条
  • [1] Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective
    Ilangumaran, Gayathri
    Smith, Donald L.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [2] Genotypic variability in stress responses of Sorghum bicolor under drought and salinity conditions
    Alzahrani, Yahya
    Abdulbaki, Abdulbaki Shehu
    Alsamadany, Hameed
    FRONTIERS IN GENETICS, 2025, 15
  • [3] Auxin response factors in plant adaptation to drought and salinity stress
    Verma, Swati
    Negi, Neelam Prabha
    Pareek, Shalini
    Mudgal, Gaurav
    Kumar, Deepak
    PHYSIOLOGIA PLANTARUM, 2022, 174 (03)
  • [4] Abiotic stress responses in plant roots: a proteomics perspective
    Ghosh, Dipanjana
    Xu, Jian
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [5] Physiological, biochemical, and metabolic responses of abiotic plant stress: salinity and drought
    Goharrizi, Kiarash Jamshidi
    Hamblin, Michael R.
    Karami, Soraya
    Nazari, Maryam
    TURKISH JOURNAL OF BOTANY, 2021, 45 (01) : 623 - 642
  • [6] Physiological and transcriptional evaluation of sweet sorghum seedlings in response to single and combined drought and salinity stress
    Wang, Zhiheng
    Wei, Yuqing
    Zhao, Yanrong
    Wang, Yuejuan
    Zou, Fang
    Huang, Siqing
    Yang, Xiuliu
    Xu, Zhongwei
    Hu, Han
    SOUTH AFRICAN JOURNAL OF BOTANY, 2022, 146 : 459 - 471
  • [7] GENOTYPIC VARIABILITY IN GLOSSY SORGHUM LINES FOR RESISTANCE TO DROUGHT, SALINITY AND TEMPERATURE STRESS AT THE SEEDLING STAGE
    MAITI, RK
    DELAROSAIBARRA, M
    SANDOVAL, ND
    JOURNAL OF PLANT PHYSIOLOGY, 1994, 143 (02) : 241 - 244
  • [8] Molecular characterization of four sorghum cultivars and their ability to germinate under heat, drought and salinity stress
    Hassanein, Ahmed M.
    Salem, Jehan M.
    Soltan, Dia M.
    PHYTON-ANNALES REI BOTANICAE, 2021, 61 : 117 - 128
  • [9] Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants
    Nxele, X.
    Klein, A.
    Ndimba, B. K.
    SOUTH AFRICAN JOURNAL OF BOTANY, 2017, 108 : 261 - 266
  • [10] Understanding the complex nature of salinity and drought-stress response in cereals using proteomics technologies
    Ngara, Rudo
    Ndimba, Bongani K.
    PROTEOMICS, 2014, 14 (4-5) : 611 - 621